首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   1篇
  2019年   2篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi‐arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte‐Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted‐repeat transposable element (MITE) of the Tuareg family was inserted in the 3′ untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.  相似文献   
2.
In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized Into two families, mPing-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. 0. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas 0. sativa indica has a higher proportion of roPing-2. We also examined the mPing system In a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes. Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the roPing system in 0. rufipogon. The distribution pattern of the roPing system in O. rufipogon indicated a diphyletlc origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. ruflpogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. ruflpogon.  相似文献   
3.
4.
Miniature inverted-repeat transposable elements or MITEs represent a large superfamily of transposons that are moderately to highly repetitive and frequently associated with plant genes. These attributes were exploited in the development of a powerful marker technology called Inter-MITE polymorphism, or IMP, which involves the amplification between two adjacent MITEs. In this report, we describe the utility of the IMP approach in the mapping and fingerprinting of the barley genome. MITEs were systematically mined from barley genomic gene sequences by computer-assisted database searches and structural analysis. Barley MITEs include members of the Stowaway family and a new family we have named Barfly. Using these barley MITEs, a total of 88 IMP markers were mapped onto an existing barley RFLP map that was based on a doubled-haploid segregating population between Hordeum vulgare and Hordeum spontaneum. We demonstrate that the IMP approach can be effectively applied in the fingerprinting of barley cultivars and for genetic similarity analysis. We also provide evidence that barley MITE-based primers can be effectively used in the mapping and fingerprinting of other cereals, suggesting that the IMP approach has broad applicability. Received: 24 March 2000 / Accepted: 28 July 2000  相似文献   
5.
Angel is the first miniature inverted-repeat transposable element (MITE) isolated from fish. Angel elements are imperfect palindromes with the potential to form stem-loop structures in vitro. Despite sequence divergence of elements of up to 55% within and between species, their inverted repeat structures have been maintained, implying functional importance. We estimate that there are about 103–104 Angels scattered throughout the zebrafish genome, evidence that this family of transposable elements has been significantly amplified over the course of evolution. Angel elements and Xenopus MITEs carry common sequence motifs at their termini, indicating common origin and/or related mechanisms of transposition. We present a model in which MITEs take advantage of the basic cellular mechanism of DNA replication for their amplification, which is dependent on the characteristic inverted repeat structures of these elements. We propose that MITEs are genomic parasites that transpose via a DNA intermediate, which forms by a folding-back of a single strand of DNA, that borrow all of the necessary factors for their amplification from products encoded in the genomes in which they reside. DNA polymorphisms in different lines of zebrafish were detected by PCR using Angel-specific primers, indicating that such elements, combined with other transposons in vertebrate genomes, will be useful molecular tools for genome mapping and genetic analyses of mutations. Received: 7 April 1998 / Accepted: 7 April 1998  相似文献   
6.
B Chénais  A Caruso  S Hiard  N Casse 《Gene》2012,509(1):7-15
Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.  相似文献   
7.
Abstract While genome sequencing projects have discovered numerous types of transposable elements in diverse eukaryotes, there are many taxa of ecological and evolutionary significance that have received little attention, such as the molluscan class Bivalvia. Examination of a 0.7-MB genomic sequence database from the cupped oyster Crassostrea virginica revealed the presence of a common interspersed element, CvA. CvA possesses subterminal inverted repeats, a tandemly repeated core element, a tetranucleotide microsatellite region, and the ability to form stable secondary structures. Three other less abundant repetitive elements with a similar structure but little sequence similarity were also found in C. virginica. Ana-1, a repetitive element with similar features, was discovered in the blood ark Anadara trapezia by probing a genomic library with a dimeric repeat element contained in intron 2 of a minor globin gene in that species. All of these elements are flanked by the dinucleotide AA, a putative target-site duplication. They exhibit structural similarity to the sea urchin Tsp family and Drosophila SGM insertion sequences; in addition, they possess regions of sequence similarity to satellite DNA from several bivalve species. We suggest that the Crassostrea repetitive elements and Ana-1 are members of a new MITE-like family of nonautonomous transposable elements, named pearl. Pearl is the first putative nonautonomous DNA transposon to be identified in the phylum Mollusca.  相似文献   
8.
Miniature-inverted repeat transposable elements (MITEs) are abundantly repeated in plant genomes and are especially found in genic regions where they could contribute regulatory elements for gene expression. We describe with molecular and cytological tools the first MITE family reported in pearl millet: Tuareg. It was initially detected in the pearl millet ortholog of Teosinte-branched1, an important developmental gene involved in the domestication of maize. The Tuareg family was amplified recently in the pearl millet genome and elements were found more abundant in wild than in domesticated plants. We found that they shared similarity in their terminal repeats with the previously described mPIF MITEs and that they are also present in other Pennisetum species, in maize and more distantly related grasses. The Tuareg family may be part of MITEs activated by PIF-like transposases and it could have been mobile since pearl millet domestication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. O. Robin contributed the FISH and fiber-FISH hybridizations.  相似文献   
9.
Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most previously known MITEs in other organisms, is small in size, non-coding, carrying TIR and DR signals, and of potential to form a stable RNA secondary structure, and it tends to insert into A+T-rich regions. Recent transpositions of Nezha were observed in A. variabilis ATCC 29413 and Nostoc sp. PCC 7120, respectively. Nezha might have proliferated recently with aid from the transposase encoded by ISNpu3-like elements. A possible horizontal transfer event of Nezha from cyanobacteria to Polaromonas JS666 is also observed.  相似文献   
10.
We have performed a genome-wide analysis of the mimp family of miniature inverted-repeat transposable elements, taking advantage of the recent release of the F. oxysporum genome sequence. Using different approaches, we detected 103 mimp elements, corresponding to 75 nonredundant copies, half of which are located on a single small chromosome. Phylogenetic analysis identified at least six subfamilies, all remarkably homogeneous in size and sequence. Based on high sequence identity in the terminal inverted repeats (TIRs), mimp elements were connected to different impala members. To gain insights into the mechanisms at the origin and amplification of mimps, we studied the potential of impala to cross-mobilize different mimps, native but also created de novo by inserting a short DNA segment between two TIRs. Our results show that TIR sequences are the main requirement for mobilization but that additional parameters in the internal region are likely to influence transposition efficiency. Finally, we show that integration site preference of native versus newly transposed mimps greatly varies in the host genomes used in this study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequences of novel mimp3 and mimp4 elements are available under GenBank accession numbers EU833100 and EU833101, respectively. Coordinates of mimp5, mimp6 and of non-classified mimp copies are indicated in Supplementary Table 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号