首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   9篇
  国内免费   13篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   30篇
  2018年   24篇
  2017年   9篇
  2016年   6篇
  2015年   7篇
  2014年   30篇
  2013年   27篇
  2012年   22篇
  2011年   20篇
  2010年   20篇
  2009年   18篇
  2008年   20篇
  2007年   25篇
  2006年   24篇
  2005年   14篇
  2004年   10篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1984年   2篇
  1978年   1篇
  1973年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
1.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expresson and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict - but do not exclude - that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux. Furthermore, large amounts of P-gp in the plasma membrane altering the ultrastructure and generalized changes, such as increases or decreases in membrane fluidity, alterations in lipid composition, changes in transmembrane pH gradient and membrane potential have been described in MDR cell lines and could account for some of the findings.  相似文献   
2.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   
3.
Studies on low-level MDR cells   总被引:3,自引:0,他引:3  
Acquired or spontaneous resistance is a major clinical problem in the treatment of cancer. Low levels of MDR gene expression or P-glycoprotein have been correlated with a high level of drug resistance in vitro and a poor response to chemotherapy in some tumors. A strong correlation between MDR mRNA, P-glycoprotein levels and degree of drug resistance has not been found in several resistant model tumor cell lines. In some cell lines at low and high level of resistance different mechanisms seem to be involved.  相似文献   
4.
Summary— Multidrug-resistant (MDR) variants of a human osteosarcoma cell line (U-2 OS) have been recently obtained by continuous exposure to doxorubicin (DX). The growth and phenotypic characteristics of these cell lines have been demonstrated to be related to the level of expression of P-glycoprotein. In this work, the morphological changes associated with MDR have been evaluated by quantitative image analysis and transmission electron microscopy. Resistant cells present morphological changes with respect to sensitive cells at both cytoplasmic and nuclear level. Some of these changes appear to be related to the degree of resistance but not to the direct presence of DX, since deprived cells maintain some modified characters, while others are partly lost. These findings suggest that DX exposure affects cell metabolism causing progressive changes of the cell morphotype.  相似文献   
5.
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   
6.
Chemoresistance is thought to be the cause of low treatment efficacy and mortality in more than 90% of patients with advanced cancer. The activation of drug efflux by P-glycoprotein is the key mechanism of resistance. All known P-gp inhibitors are used only in the combination therapy. We propose a new approach based on the multitarget rational design of drugs, which possess both the antitumor and efflux pump inhibitory activity. In this work, the principle possibility of combining the ability to inhibit P-gp and p53-Mdm2 protein-protein interaction in one structure is considered. The biological activity of a number of known and newly synthesized compounds was evaluated using cell lines with different p53 status. The possibility of using computer modeling for the search for P-glycoprotein inhibitors among Mdm2 inhibitors was analyzed; P-gp interaction site and binding modes of substrates and inhibitors were identified. The results obtained in cells that have the native balance of drug resistance and sensitivity showed the ability of the cells to both actively throw out xenobiotics and to lose this ability using P-gp inhibitors. The data obtained indicate that Mdm2 inhibitors are a promising platform for the development of multitarget drugs that can overcome tumor resistance by inhibiting the P-glycoprotein activity.  相似文献   
7.
《Biomarkers》2013,18(5):425-435
Abstract

Data from 30 pharmacogenomic studies that investigated MDR1 mRNA expression or gene variants (C3435T, G2677TA, C1236T) and response to therapy in acute myeloid leukaemia (AML) were synthesized. Anthracycline-based regimens were mainly used. MDR1 mRNA overexpression was associated with poor response to therapy [odds ratio (OR)?=?2.49 95% confidence interval (CI) 1.38–4.50]. The gene variants were not associated with response to treatment; the generalized ORs, a genetic model-free approach, for the variants C3435T, G2677TA and C1236T were ORG?=?0.86 (95% CI 0.55–1.37), ORG?=?0.97 (95% CI 0.58–1.64) and ORG?=?1.17 (95% CI 0.75--1.83), respectively. There is indication that MDR1 mRNA expression may be considered as a potential marker for response to chemotherapy in AML patients.  相似文献   
8.
9.
Overexpression of ATP-binding cassette (ABC) transporter is one of the most important factors taking responsibility for the progress of multidrug resistance (MDR) in multiple cancers. In this study, we investigated that veliparib, a PARP inhibitor which is in clinical development, could overcome ABCB1-mediated MDR in liver cancer cells. Veliparib could significantly enhance the cytotoxic effects of a series of conventional chemotherapeutic drugs in ABCB1-overexpression liver cancer cells. Mechanism study showed that veliparib could significantly enhance the accumulation of doxorubicin in ABCB1-overexpression liver cancer cells, without down-regulating the expression level of ABCB1. Finally, veliparib could significantly inhibit the ATPase activity of ABCB1 transporter. This study could provide information that combine veliparib with other chemotherapeutic drugs may benefit liver cancer patients.  相似文献   
10.

Background

Variability in MDR1 and PXR has been associated with differences in drug plasma levels and response to antiretroviral therapy. We investigated whether polymorphisms in MDR1 (T-129C, C1236T and C3435T) and PXR (C63396T) affect lopinavir plasma concentration and the virological or immunological response to HAART in HIV-1-infected children.

Methods

Genotypes were identified in 100 blood donors and 38 HIV-1-infected children. All children received HAART with lopinavir boosted with ritonavir (LPV/r) at the time of LPV plasma level quantification, before (Ctrough) and between 1 and 2 h after (Cpost-dose) the administration of the next dose of drug. CD4+ T-cell counts and plasma viral load were analyzed before and after the initiation of LPV/r.

Results

MDR1 1236T, MDR1 3435T and PXR 63396T alleles showed a frequency of ~ 50% while the MDR1 -129C allele only reached 5%. Children heterozygotes 1236CT showed a significantly lower LPV Cpost-dose than homozygotes 1236TT (median Cpost-dose = 3.04 μg/ml and 6.50 μg/ml, respectively; p = 0.016). Children heterozygotes 1236CT also had a lower decrease of viral load after 36 weeks of LPV/r exposure compared with homozygotes 1236CC (median viral load changes = − 0.50 log10 copies/ml and − 2.08 log10 copies/ml, respectively; p = 0.047). No effect on the immunological response was observed for polymorphisms of MDR1 or PXR.

Conclusions

Our results suggest that the MDR1 C1236T SNP significantly reduces LPV plasma concentration affecting the virological response to HAART. Heterozygotes 1236CT might have an altered level of P-gp expression/activity in enterocytes and CD4+ T lymphocytes that limits the absorption of LPV leading to an impaired virological suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号