首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   10篇
  国内免费   2篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   15篇
  2019年   19篇
  2018年   12篇
  2017年   14篇
  2016年   7篇
  2015年   6篇
  2014年   12篇
  2013年   19篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   10篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.  相似文献   
2.
A series of sildenafil analogues and aniline substituted pyrazolo[4,3-e][1,2,4]triazine sulfonamides were prepared and evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors and for their anticancer activity against two human breast cancer cell lines (MCF-7, MDA-MB-231). The new compounds were ineffective as CA I inhibitors, poorly inhibited CA II, but were more effective against the tumor-associated isoforms CA IX and XII, with some compounds acting as low nanomolar inhibitors. Evaluation of the cytotoxicity by using an MTT assay, the inhibition of [3H]thymidine incorporation into DNA as well as collagen synthesis inhibition, demonstrated that these sulfonamides exhibit cytotoxic effects on breast cancer cell lines ex vivo.  相似文献   
3.
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.  相似文献   
4.
Chemoresistance is a critical challenge in the clinical treatment of triple‐negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin‐6 (IL‐6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA‐MB‐231 was first investigated. The results showed that IL‐6 treatment could induce upregulation of HIF‐1α via the activation of STAT3 in MDA‐MB‐231 cells, which consequently contributed to its effect against chemotherapeutic drug‐induced cytotoxicity and cell apoptosis. However, knockdown of HIF‐1α attenuated such effect via affecting the expressions of apoptosis‐related molecules as Bax and Bcl‐2 and drug transporters as P‐gp and MRP1. This study indicated that targeting at IL‐6/HIF‐1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy.  相似文献   
5.
This work reports the finding of a unique fast inward sodium current (INa) in MDA-MB-231 cells which is missing in MDA-MB-468 cells and in MCF-7 cells. This current is high-voltage-activated and displays a window current at the membrane potential of MDA-MB-231 cells. This current is blocked by high concentrations of tetrodotoxin (TTX). In MDA-MB-231 cells, which are the most invasive cells among the three cell lines tested, proliferation and migration were not sensitive to TTX while invasion was reduced by approximately 30%. These experiments suggest that INa is involved in the invasion process, probably through its participation to the regulation of the intracellular sodium homeostasis.  相似文献   
6.
Equisetum arvense L. is widely used as a traditional medicine for the management of inflammation and cancer. In the present study, phyto-chemical analysis of E. arvense was carried out and its cytotoxic potential against human melanoma (MDA-MB-435) and ovarian cancer cells (OVCAR3) was evaluated. Phyto-chemical profile of E. arvense methanolic extract and its fractions was established employing UHPLC-MS/MS and Global Natural Product Social molecular networking. Cytotoxic activity was evaluated using absorbance assay (CellTiter-Blue® Cell Viability Assay). Overall, 22 compounds were identified in the crude extract and polarity-based fractions of E. arvense. Flavonoids, flavonoid-O-glycosides and phenolic acids were found to be the major classes of phyto-chemicals. In addition, the crude extract of E. arvense and its fractions were found active against the tested cell lines. The highest anti-cancer activity against OVCAR3 cells was exhibited by the n-hexane fraction. These results indicated that E. arvense is rich in flavonoids and might be used for the development of anti-cancer drugs against melanoma and ovarian cancers.  相似文献   
7.
目的:探讨微小RNA-221/222(miR-221/222)对乳腺癌MDA-MB-231/阿霉素(DOX)细胞DOX耐药性的影响。方法:采用脂质体法转染miR-221/222抑制物(miR-221/222 inhibitor)至MDA-MB-231/DOX细胞内(Inhibitor组),同时设立空白对照组和转染无关序列的阴性对照组,采用实时荧光定量PCR (qRT-PCR)检测MDA-MB-231细胞株及MDA-MB-231/DOX细胞株的miR-221/222表达水平及转染效率;CCK-8法检测转染48 h后MDA-MB-231/DOX细胞对DOX药物敏感性的变化;流式细胞术(FCM)检测转染MDA-MB-231/DOX细胞的细胞凋亡率;蛋白免疫印迹实验(WB)检测转染后MDA-MB-231/DOX细胞内促凋亡蛋白p53上调凋亡调控因子(PUMA),Bcl2蛋白修饰因子(BMF)以及细胞周期蛋白激酶抑制因子p27(p27Kip1)的表达情况。结果:MDA-MB-231/DOX细胞中的miR-221/222表达水平高于亲本MDA-MB-231细胞(P0.05);MDA-MB-231/DOX细胞转染miR-221/222 inhibitor 96 h后,miR-221/222的表达水平低于空白对照组和阴性对照组(P0.05);与空白对照组相比,MDA-MB-231/DOX细胞转染miR-221/222 inhibitor 48h后,DOX继续处理48 h后,细胞的凋亡率明显升高,且细胞内的促凋亡蛋白PUMA,BMF以及p27Kip1的表达均增加(P0.05);DOX对inhibitor组耐药细胞的半数抑制浓度(IC50)显著低于空白对照组细胞及阴性对照组(P0.05)。结论:miR-221/222能够增加MDA-MB-231/DOX细胞对DOX的耐药性,这可能与下调促凋亡蛋白的表达有关;降低miR-221/222水平可诱导MDA-MB-231/DOX凋亡,并且上调促凋亡蛋白的表达,从而部分逆转MDA-MB-231/DOX对DOX的耐药性。  相似文献   
8.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   
9.
-Glucuronidase (GUS) has become an important enzyme model for the genetic study of molecular disease, enzyme realization, and therapy, and for the biogenesis and function of the lysosome and lysosomal enzymes. The genetics of human -glucuronidase was investigated utilizing 188 primary man-mouse and man-Chinese hamster somatic cell hybrids segregating human chromosomes. Cell hybrids were derived from 16 different fusion experiments involving cells from ten different and unrelated individuals and six different rodent cell lines. The genetic relationship of GUS to 28 enzyme markers representing 19 linkage groups was determined, and chromosome studies on selected cell hybrids were performed. The evidence indicates that the -glucuronidase gene is assigned to chromosome 7 in man. Comparative linkage data in man and mouse indicate that the structural gene GUS is located in a region on chromosome 7 that has remained conserved during evolution. Involvement of other chromosomes whose genes may be important in the final expression of GUS was not observed. A tetrameric structure of human -glucuronidase was demonstrated by the formation of three heteropolymers migrating between the human and mouse molecular forms in chromosome 7 positive cell hybrids. Linkage of GUS to other lysosomal enzyme genes was investigated. -Hexosaminidase HEX B) was assigned to chromosome 5; acid phosphatase2 (ACP 2) and esterase A4 (ES-A 4) were assigned to chromosome 11; HEX A was not linked to GUS; and -galactosidase (-GAL) was localized on the X chromosome. These assignments are consistent with previous reports. Evidence was not obtained for a cluster of lysosomal enzyme structural genes. In demonstrating that GUS was not assigned to chromosome 9 utilizing an X/9 translocation segregating in cell hybrids, the gene coding for human adenylate kinase1 was confirmed to be located on chromosome 9.Supported by NIH Grants HD 05196, GM 20454, and GM 06321, by NSF Grant BMS 73-07072, and by HEW Maternal and Child Health Service, Project 417.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号