首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4135篇
  免费   501篇
  国内免费   52篇
  2024年   7篇
  2023年   87篇
  2022年   87篇
  2021年   216篇
  2020年   233篇
  2019年   221篇
  2018年   220篇
  2017年   138篇
  2016年   125篇
  2015年   203篇
  2014年   307篇
  2013年   280篇
  2012年   236篇
  2011年   273篇
  2010年   192篇
  2009年   157篇
  2008年   177篇
  2007年   206篇
  2006年   184篇
  2005年   125篇
  2004年   126篇
  2003年   114篇
  2002年   106篇
  2001年   66篇
  2000年   37篇
  1999年   32篇
  1998年   30篇
  1997年   44篇
  1996年   23篇
  1995年   34篇
  1994年   42篇
  1993年   33篇
  1992年   30篇
  1991年   22篇
  1990年   29篇
  1989年   17篇
  1988年   13篇
  1987年   13篇
  1986年   6篇
  1985年   18篇
  1984年   43篇
  1983年   28篇
  1982年   22篇
  1981年   12篇
  1980年   11篇
  1979年   19篇
  1978年   11篇
  1977年   8篇
  1974年   8篇
  1971年   6篇
排序方式: 共有4688条查询结果,搜索用时 15 毫秒
1.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   
2.
Microscopic structural alterations of liver tissue induced by freeze-thaw cycles give rise to palpable property changes. However, the underlying damage to tissue architecture is difficult to quantify histologically, and published data on macroscopic changes in biophysical properties are sparse.To better understand the influence of hepatic cells and stroma on global biophysical parameters, we studied rat liver specimens freshly taken (within 30 min after death) and treated by freeze-thaw cycles overnight at either −20 °C or –80 °C using diffusion-weighted imaging (DWI) and multifrequency magnetic resonance elastography (MRE) performed at 0.5 T in a tabletop MRE scanner. Tissue structure was analyzed histologically and rheologic data were analyzed using fractional order derivatives conceptualized by a called spring-pot component that interpolates between pure elastic and viscous responses.Overnight freezing and thawing induced membrane disruptions and cell detachment in the space of Disse, resulting in a markedly lower shear modulus μ and apparent diffusion coefficient (ADC) (μ[−20 °C] = 1.23 ± 0.73 kPa, μ[−80 °C] = 0.66 ± 0.75 kPa; ADC[–20 °C] = 0.649 ± 0.028 μm2/s, ADC[−80 °C] = 0.626 ± 0.025 μm2/s) compared to normal tissue (μ = 9.92 ± 3.30 kPa, ADC = 0.770 ± 0.023 μm2/s, all p < 0.001). Furthermore, we analyzed the springpot-powerlaw coefficient and observed a reduction in −20 °C specimens (0.22 ± 0.14) compared to native tissue (0.40 ± 0.10, p = 0.033) and −80 °C specimens (0.54 ± 0.22, p = 0.002), that correlated with histological observations of sinusoidal dilation and collagen distortion within the space of Disse. Overall, the results suggest that shear modulus and water diffusion in liver tissue markedly decrease due to cell membrane degradation and cell detachment while viscosity-related properties appear to be more sensitive to distorted stromal and microvascular architecture.  相似文献   
3.
This minireview looks back at a century of glycolysis research with a focus on the mechanisms of flux regulation. Traditionally, glycolysis is regarded as a feeder pathway that prepares glucose for further catabolism and energy production. However, glycolysis is much more than that, in particular in those tissues that express the low affinity glucose-phosphorylating enzyme glucokinase. This enzyme equips the glycolytic pathway with a special steering function for the regulation of intermediary metabolism. In beta cells, glycolysis acts as a transducer for triggering and amplifying physiological glucose-induced insulin secretion. On the basis of these considerations, I have defined a glycolytic flux regulatory unit composed of the two fructose ester steps of this pathway with various enzymes and metabolites that regulate glycolysis.  相似文献   
4.
Thirty-one 4-oxoquinoline-3-carboxamides derivatives were synthesized and evaluated for their anti-fibrotic activities by the inhibition of TGF-β1-induced total collagen accumulation and anti-inflammatory activities by the inhibition of LPS-stimulated TNF-α production. Among them, three compounds (10a, 10l and 11g) exhibited potent inhibitory effects on both TGF-β1-induced total collagen accumulation and LPS-stimulated TNF-α production. Furthermore, oral administrations of 10l at a dose of 20 mg/kg/day for 4 weeks effectively alleviated lung inflammation and injury, and decreased lung collagen accumulation in bleomycin-induced pulmonary fibrosis model. Histopathological evaluation of lung tissue confirmed 10l as a potential, orally active agent for the treatment of pulmonary fibrosis.  相似文献   
5.
Previous studies have revealed the activation of neutral sphingomyelinase (N-SMase)/ceramide pathway in hepatic tissue following warm liver ischemia reperfusion (IR) injury. Excessive ceramide accumulation is known to potentiate apoptotic stimuli and a link between apoptosis and endoplasmic reticulum (ER) stress has been established in hepatic IR injury. Thus, this study determined the role of selective N-SMase inhibition on ER stress and apoptotic markers in a rat model of liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60?min, followed by 60?min reperfusion. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reactions monitoring (MRM) method using ultrafast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared with controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. A significant increase was observed in ER stress markers C/EBP-homologous protein (CHOP) and 78?kDa glucose-regulated protein (GRP78) in IR injury, which was not significantly altered by N-SMase inhibition. Inhibition of N-SMase caused a significant reduction in phospho-NF-kB levels, hepatic TUNEL staining, cytosolic cytochrome c, and caspase-3, -8, and -9 activities which were significantly increased in IR injury. Data herein confirm the role of ceramide in increased apoptotic cell death and highlight the protective effect of N-SMase inhibition in down-regulation of apoptotic stimuli responses occurring in hepatic IR injury.  相似文献   
6.
Abstract Burkholderia cepacia has emerged as an important multiresistant pathogen in cystic fibrosis (CF), associated in 20% of colonised patients with a rapid and fatal decline in lung function. Although knowledge of B. cepacia epidemiology has improved, the mechanisms involved in pathogenesis remain obscure. In this study, B. cepacia lipopolysaccharide (LPS) was assessed for endotoxic potential and the capacity to induce tumour necrosis factor (TNF). LPS preparations from clinical and environmental isolates of B. cepacia and from the closely related species Burkholderia gladioli exhibited a higher endotoxic activity and more pronounced cytokine response in vitro compared to preparations from the major CF pathogen Pseudomonas aeruginosa . This study may help to explain the vicious host immune response observed during pulmonary exacerbations in CF patients colonised by B. cepacia and lead to therapeutic advances in clinical management.  相似文献   
7.
Patients with idiopathic pulmonary fibrosis (IPF) have a high risk of developing lung cancer compared with the general population. The morbidity of lung cancer in IPF patient ranges from 3% to 22%, and in some cases exceeds 50%, and these patients have a reduced survival time. However, the mechanisms through which IPF increases the morbidity and mortality in lung cancer remain unclear.By carefully analyzing the pathological features of these two diseases, we uncovered that, first, similar to IPF, lung carcinomas are more frequently found in the peripheral area of the lungs and, second, lung cancers tend to develop from the honeycomb areas in IPF. In accordance with the above pathological features, due to the spatial location, the peripheral areas of the lung experience a high stretch force because the average distance between adjacent alveolar cells in this area tends to be larger than that at the central lung when inflated; furthermore, the honeycomb areas, comprised of condensed fibrous tissue, are characterized by increased stiffness. Both of these pathological features of lung cancer and IPF are coincidentally related to abnormal mechanical forces (stretch and tissue stiffness). Therefore, we believe that the aberrant mechanical forces that are generated in the lung with IPF may contribute to the onset and progression of lung cancer.In this review, we discuss the possible effects of mechanical forces that are generated in IPF on the initiation and progression of lung cancer from the perspective of the hallmarks of cancer, including proliferation, metastasis, angiogenesis, cancer stem cells, immunology, epigenetics, and metabolism, so as to advance our understanding of the pathogenesis of IPF-related lung cancer and to harness these concepts for lung cancer mechanotherapies.  相似文献   
8.
目的研究甲磺酸伊马替尼(STI571)改善单侧输尿管梗阻(UUO)小鼠肾间质纤维化的作用及机制。方法48只小鼠随机分为4组:假手术组,模型组,小剂量治疗组(80mg/kg/d),大剂量治疗组(160mg/kg/d)。采用左侧输尿管双结扎的方法建立UUO模型,治疗组每天以STI57180、160mg/Kg灌胃。分别于术后第8,11d分别处死各组小鼠6只。光镜下观察肾脏病理改变。用免疫组化技术检测肾组织TGF-β1、PAI-1、α-SMA和PCNA的表达。结果治疗组的肾间质纤维化定量显著低于模型组(P〈0.05),且不同剂量组之间存在显著差异(P〈0.05)。模型组和治疗组左肾TGF-β1、PAI-1、α-SMA和PCNA的表达均随梗阻时间延长而逐渐增加,治疗组α-SMA和PCNA的表达较模型组明显减低(P〈0.05)。结论甲磺酸伊马替尼可显著减轻UUO小鼠梗阻侧肾脏间质纤维化,下调α-SMA和PCNA的表达,减少肾间质细胞外基质的沉积,对UUO小鼠肾间质纤维化有一定防治作用。  相似文献   
9.
10.
The effects of single large doses of the porphyrin-heme precursor ?d-aminolevulinic acid on tissue porphyrins and on δ-aminolevulinate synthase and heme oxygenase, the rate-living enzymes of liver heme synthesis and degradation respectively, were studied in the chick embryo in ovo, in the mouse and in the rat. δ-Aminolevulinic acid treatment produced a distinctive pattern characterized by extensive tissue porphyrin accumulation and alterations in these rate-limiting enzymes in the liver. Repression of basal or allylisopropylacetamide-induced liver δ-aminolevulinate synthase was observed and, in the mouse and the rat, induction of liver heme oxygenase after δ-aminolevulinic acid treatment, in a manner similar to the known effects of hemin on these enzymes. In the chick embryo liver in ovo heme oxygenase was substantially higher than in rat and mouse liver, and was not significantly induced by δ-aminolevulinic acid or other compounds, including hemin, CS2 and CoCl2. Levulinic acid, an analogue of δ-aminolevulinic acid, did not induce heme oxygenase in mouse liver. δ-Aminolevunilic acid treatment did not impair ferrochelatase activity but was associated with slight and variable decreases in liver cytochrome P-450. Treatment of chick embryos with a small ‘priming’ dose of 1,4-dihydro-3,5-dicarbethoxycollidine, which impairs liver ferrochelatase activity, accentuated porphyrin accumulation after δ-aminolevulinic acid in the liver. These observations indicate that exogenous δ-aminolevulinic acid is metabolized to porphyrins in a number of tissues and, at least in the liver, to a physiologically significant amount of heme, thereby producing an increase in the size of one or more of the heme pools that regulate both heme systhesis and degradation. It is also possible than when δ-aminolevulinic acid is markedly overproduced in vivo it may be transported to many tissues and re-enter the heme pathway and alter porphyrin-heme metabolism in cells and tissues other than those in which its overproduction primarily occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号