首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  国内免费   3篇
  完全免费   35篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   6篇
  2015年   8篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   10篇
  2009年   15篇
  2008年   18篇
  2007年   15篇
  2006年   16篇
  2005年   9篇
  2004年   11篇
  2003年   17篇
  2002年   5篇
  2001年   2篇
  2000年   9篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有239条查询结果,搜索用时 30 毫秒
1.
Rosmarinic acid   总被引:23,自引:0,他引:23  
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. However, it is also found in species of other higher plant families and in some fern and hornwort species. Rosmarinic acid has a number of interesting biological activities, e.g. antiviral, antibacterial, antiinflammatory and antioxidant. The presence of rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting effects. In plants, rosmarinic acid is supposed to act as a preformed constitutively accumulated defence compound. The biosynthesis of rosmarinic acid starts with the amino acids L-phenylalanine and L-tyrosine. All eight enzymes involved in the biosynthesis are known and characterised and cDNAs of several of the involved genes have been isolated. Plant cell cultures, e.g. from Coleus blumei or Salvia officinalis, accumulate rosmarinic acid in amounts much higher than in the plant itself (up to 36% of the cell dry weight). For this reason a biotechnological production of rosmarinic acid with plant cell cultures has been proposed.  相似文献
2.
Wink M 《Phytochemistry》2003,64(1):3-19
Secondary metabolites, at least the major ones present in a plant, apparently function as defence (against herbivores, microbes, viruses or competing plants) and signal compounds (to attract pollinating or seed dispersing animals). They are thus important for the plant's survival and reproductive fitness. Secondary metabolites therefore represent adaptive characters that have been subjected to natural selection during evolution. Molecular phylogenies of the Fabaceae, Solanaceae and Lamiaceae were reconstructed and employed as a framework to map and to interpret the distribution of some major defence compounds that are typical for the respective plant families; quinolizidine alkaloids and non-protein amino acids for legumes; tropane and steroidal alkaloids for Solanaceae, and iridoids and essential oils for labiates. The distribution of the respective compounds appears to be almost mutually exclusive in the families studied, implying a strong phylogenetic and ecological component. However, on a closer look, remarkable exceptions can be observed, in that certain metabolites are absent (or present) in a given taxon, although all the neighbouring and ancestral taxa express (or do not express, respectively) the particular trait. It is argued that these patterns might reflect differential expression of the corresponding genes that have evolved earlier in plant evolution. The inconsistent secondary metabolite profiles mean that the systematic value of chemical characters becomes a matter of interpretation in the same way as traditional morphological markers. Thus, the distribution of secondary metabolites has some value for taxonomy but their occurrence apparently reflects adaptations and particular life strategies embedded in a given phylogenetic framework.  相似文献
3.
Yu J  Lei J  Yu H  Cai X  Zou G 《Phytochemistry》2004,65(7):881-884
The essential oil of Scutellaria barbata was obtained by hydrodistillation with a 0.3% (v/w) yield and analysed by GC and GC-MS. The main compounds in the oil were hexahydrofarnesylacetone (11.0%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (7.8%), menthol (7.7%) and 1-octen-3-ol (7.1%). The antimicrobial activity of the oil was evaluated against 17 microorganisms using disc diffusion and broth microdilution methods. The gram-positive bacteria, including methicillin-resistant Staphlococcus aureus, were more sensitive to the oil than gram-negative bacteria and yeasts.  相似文献
4.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献
5.
Plant trichomes come in a variety of shapes, sizes and cellular composition. Some types, commonly called glandular trichomes, produce large amounts of specialized (secondary) metabolites of diverse classes. Trichomes are implicated in a variety of adaptive processes, including defense against herbivores and micro-organisms as well as in ion homeostasis. Because trichomes protrude from the epidermis and can often be easily separated from it and harvested, the mRNAs, proteins and small molecules that they contain are unusually accessible to analysis. This property makes them excellent experimental systems for identification of the enzymes and pathways responsible for the synthesis of the specialized metabolites found in these structures and sometimes elsewhere in the plant. We review the literature on the biochemistry of trichomes and consider the attributes that might make them highly useful targets for plant metabolic engineering.  相似文献
6.
7.
Lavender extracts are known to produce several mild effects at central and peripheral level. However, no studies are so far available about the potential effects of lavender essential oil on the hemostatic system. In this work, we demonstrated antiplatelet properties of lavender oil towards platelet aggregation induced by arachidonic acid, U46619, collagen and ADP (IC50=51, 84, 191 and 640 μg/ml, respectively) on guinea-pig platelet rich plasma (PRP) and its ability to destabilize clot retraction (IC50=149 μg/ml) induced by thrombin on rat PRP.

Furthermore, antithrombotic properties were studied in an in vivo model of pulmonary thromboembolism induced by intravenous injection of a collagen–epinephrine mixture in mice subacutely treated with lavender oil. In this model, lavender oil (100 mg/kg/day os for 5 days) significantly reduced thrombotic events without inducing prohemorrhagic complications at variance with acetylsalicylic acid used as reference drug. Finally, main components of the oil were studied in vitro in order to assess their antiplatelet effects, but none of them possessed an activity comparable to the oil itself. These results provide the first experimental evidence of lavender oil's antiplatelet/antithrombotic properties which could be due to a synergistic effect of its components.  相似文献

8.
Herrera J 《Annals of botany》2005,95(3):431-437
BACKGROUND AND AIMS: Flowers are relatively invariant organs within species, but quantitative variation often exists among conspecifics. These variations represent the raw material that natural selection can magnify, eventually resulting in morphological divergence and diversification. This paper investigates floral variability in Rosmarinus officinalis, a Mediterranean shrub. METHODS: Nine populations were selected in three major southern Spanish habitats (coast, lowland and mountains) along an elevation gradient. Flower samples from randomly chosen plants were collected from each population, and a total of 641 flowers from 237 shrubs were weighed while still fresh to the nearest 0.1 mg. Leaves from the same plants were also measured. Variations among habitats, sites and plants were explored with general linear model ANOVA. Leaf-flower covariation was also investigated. KEY RESULTS: Most (58%) mass in flowers was accounted for by the corolla, whose linear dimensions correlated directly with flower mass. Averaged over plants, the mass of a flower varied between 12 mg and 38 mg. Habitat, site (within habitat) and shrub identity had significant effects on mass variance. Flowers from the coast were the smallest (17 mg) and those from the mountains the largest (25 mg on average). A pattern of continuously increasing flower size with elevation emerged which was largely uncoupled from the geographical pattern of leaf size variation. CONCLUSIONS: As regards flower size, a great potential to local differentiation exists in Rosmarinus. Observed divergences accord with a regime of large-bodied pollinator selection in the mountains, but also with resource-cost hypotheses on floral evolution that postulate that reduced corollas are advantageous under prevailingly stressful conditions.  相似文献
9.
Allozyme diversity in the tetraploid endemic Thymus loscosii (Lamiaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: Thymus loscosii (Lamiaceae) is a tetraploid perennial species endemic to the Ebro river basin (north-eastern Spain), which is included in the National Catalogue of Endangered Species. It is a tetraploid species (2n = 54), presumably an autotetraploid originated by the duplication of a 2n = 28 genome and the subsequent loss of two chromosomes. Allozyme electrophoresis was conducted to survey the levels and distribution of genetic diversity and to test the previous autopolyploid hypothesis for its origin. In addition, both in situ and ex situ conservation measures are proposed. METHODS: Eight populations were sampled for analysis by standard methods of starch gel electrophoresis, and six putative enzymatic loci were resolved (five consistently and one only partially). KEY RESULTS: Banding patterns exhibited no evidence of fixed heterozygosity and showed both balanced and unbalanced heterozygotes. In addition, most individuals showed a pattern consistent with the presence of three or four alleles at a single locus. High levels of genetic variability were found at population level (P = 85 %, A = 3.0, He = 0.422), in addition to a trend of an excess of heterozygotes. CONCLUSIONS: Allozyme data support the hypothesis that T. loscosii is an autotetraploid, and the high number of alleles at some loci may be due to repeated polyploidization events. The high values of genetic variation found in this species agree with those expected for tetraploids. The excess of heterozygotes may be due to some barriers to inbreeding (e.g. occurrence of gynodioecy) and/or selection for heterozygosity.  相似文献
10.
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme involved in the biosynthesis of rosmarinic acid in Lamiaceae reducing hydroxyphenylpyruvates in dependence of NAD(P)H to the corresponding hydroxyphenyllactates. The HPPR protein was purified from suspension cells of Coleus blumei accumulating high levels of rosmarinic acid by ammonium sulfate precipitation, anion exchange chromatography, hydroxylapatite chromatography, chromatography on 2',5'-ADP-Sepharose 4B and SDS-polyacrylamide gel electrophoresis. The protein was tryptically digested and the peptides sequenced. Sequence information was used to isolate a full-length cDNA-clone for HPPR (EMBL accession number AJ507733) by RT-PCR, screening of a C. blumei cDNA-library and 5'-RACE-PCR. The open reading frame of the HPPR-cDNA consists of 939 nucleotides encoding a protein of 313 amino acid residues. The sequence showed that HPPR belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases. The HPPR-cDNA was heterologously expressed in Escherichia coli and the protein was shown to catalyse the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvate to 4-hydroxyphenyllactate and 3,4-dihydroxyphenylpyruvate to 3,4-dihydroxyphenyllactate.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号