首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   13篇
  国内免费   18篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   13篇
  2013年   14篇
  2012年   9篇
  2011年   14篇
  2010年   10篇
  2009年   21篇
  2008年   15篇
  2007年   26篇
  2006年   21篇
  2005年   10篇
  2004年   15篇
  2003年   9篇
  2002年   16篇
  2001年   15篇
  2000年   6篇
  1999年   8篇
  1998年   12篇
  1997年   11篇
  1996年   10篇
  1995年   14篇
  1994年   8篇
  1993年   9篇
  1992年   7篇
  1991年   16篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
1.
R. Meyer  W. Nagl 《Protoplasma》1993,172(2-4):132-135
Summary Video-densitometric DNA measurements of Feulgenstained tissues of 42 day old eggs of the corn snake,Elaphe g. guttata (Columbridae, Serpentes), revealed a basic DNA content of 2C=2.17 pg, with somatic polyploidy in the allantois, the chorioallontois, the yolk sac, and other extraembryonic membranes. The maximum value determined was 128C (in binucleate cells 2×128C) at the distal pole of the egg. This is the first report of somatic polyploidy in a snake, and one of the first in reptiles in general.  相似文献   
2.
《Journal of morphology》2017,278(6):768-779
Non‐avian reptiles commonly are assumed to be like birds in their overall patterns of development. However, colubrid corn snakes (Pantherophis guttatus ) have mechanisms of yolk cellularization and processing that are entirely different from the avian pattern. In birds, a vascular “yolk sac” surrounds and digests the liquid yolk. In contrast, in corn snakes, the yolk material is converted into vascularized cords of yolk‐filled cells. In this study, we used stereomicroscopy, histology, and scanning electron microscopy to analyze this unusual developmental pattern in corn snakes. Our observations reveal that the yolk sac cavity is invaded by endodermal cells that proliferate, absorb yolk spheres, and form aggregates of interconnected cells within the liquid yolk mass. As development proceeds, small blood vessels arise from the yolk sac omphalopleure, penetrate into the yolk mass, and become tightly encased in the endodermal cells. The entire vitellus ultimately becomes converted into a mass of vascularized, “spaghetti‐like” strands of yolk‐laden cells. The resulting arrangement allows yolk to be digested intracellularly and yolk products to be transported to the developing embryo. Indirect evidence for this pattern in other species raises the possibility that it is ancestral for squamates and quite possibly Reptilia in general.  相似文献   
3.
Development of the yolk sac of squamate reptiles (lizards and snakes) differs from other amniote lineages in the pattern of growth of extraembryonic mesoderm, which produces a cavity, the yolk cleft, within the yolk. The structure of the yolk cleft and the accompanying isolated yolk mass influence development of the allantois and chorioallantoic membrane. The yolk cleft of viviparous species of the Eugongylus group of scincid lizards is the foundation for an elaborate yolk sac placenta; development of the yolk cleft of oviparous species has not been studied. We used light microscopy to describe the yolk sac and chorioallantoic membrane in a developmental series of an oviparous member of this species group, Oligosoma lichenigerum. Topology of the extraembryonic membranes of late stage embryos differs from viviparous species as a result of differences in development of the yolk sac. The chorioallantoic membrane encircles the egg of O. lichenigerum but is confined to the embryonic hemisphere of the egg in viviparous species. Early development of the yolk cleft is similar for both modes of parity, but in contrast to viviparous species, the yolk cleft of O. lichenigerum is transformed into a tube‐like structure, which fills with cells. The yolk cleft originates as extraembryonic mesoderm is diverted from the periphery of the egg into the yolk sac cavity. As a result, a bilaminar omphalopleure persists over the abembryonic surface of the yolk. The bilaminar omphalopleure is ultimately displaced by intrusion of allantoic mesoderm between ectodermal and endodermal layers. The resulting chorioallantoic membrane has a similar structure but different developmental history to the chorioallantoic membrane of the embryonic hemisphere of the egg. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
Laryngeal air sacs are circular out-pocketings, located in the hyoid bone with their ostium in the midline of the anterior part of the larynx. From previous cadaver studies of the rhesus monkey it was deduced that the function of the air sac is to act as a resonating chamber. The present study was designed to test this hypothesis. Recordings were made of three rhesus monkeys before and after surgical removal of the air sac. Spectrographic analysis of the monkeys' vocalizations indicated that differences in formant frequency characteristics between pre-and post-surgical recordings were negligible. This finding suggests that the laryngeal air sac does not play an important role in the resonant properties of the monkeys' vocal tracts.  相似文献   
5.
Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insect's ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention.  相似文献   
6.
用焦锑酸盐沉淀法对鹤顶兰(Phaius tankervilliae)胚囊发育过程中的Ca2+状态进行超微细胞化学定位。观察结果发现:功能大孢子时期,珠孔端的胚囊壁上开始出现小颗粒的Ca2+沉淀,但功能大孢子细胞内未见明显的Ca2+标记;四核胚囊时期胚囊壁上的Ca2+沉淀明显增多,液泡膜上有Ca2+沉淀出现,珠孔处的Ca2+沉淀颗粒较大;成熟胚囊时期,胚囊壁上的Ca2+沉淀进一步增多,且胚囊内Ca2+分布明显增多,且极性明显,珠孔端助细胞、卵细胞比合点端反足细胞有更多的Ca2+沉淀。鹤顶兰成熟胚囊内Ca2+积累的来源有:(1)在胚囊成熟前主要由珠被细胞、珠细胞通过胞间连丝向胚囊运输;(2)以沉淀有大量Ca2+的小泡形式跨过胚囊壁进入胚囊。  相似文献   
7.
Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well-known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays and high-resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.  相似文献   
8.
Chengqi Ao 《Plant biosystems》2019,153(5):673-678
To unravel a low fecundity in Zephyranthes candida (Lindl.) Herb., the development of the endosperm was studied using conventional paraplast section technique. The results show that the endosperm develops normally and comprises four major stages viz. syncytial, cellularization, differentiation and maturation. Both proliferation of antipodal cells and their close contact with the primary endosperm nucleus were observed, which should favor transportation of nutrients and accelerate development of embryo and endosperm. In Z. candida, at least four events of nuclear migration occurred during the course of embryogenesis and endosperm development. The 12.7% structurally and functionally abnormal ovules, along with the 22.3% collapsed and aborted ovules observed accounts for the low fecundity to some extent.  相似文献   
9.
Post‐cloacal bones of gekkotans may be present as a single (medial) pair, two pairs (medial and lateral), or may be lacking. We, herein, demonstrate that the presence of a single medial pair is the ancestral condition for the Gekkota, that the lateral pair is of sporadic occurrence within and between families, except for the Eublepharidae where it is universal, and that absence is also of sporadic occurrence except for the Sphaerodactylidae where it is the ancestral condition. Adult male Tokay geckos (Gekko gecko) possess only the medial pair of bones, and these exhibit a regionally‐specific expression of woven, fibrolamellar, and lamellar bone, and an enclosed medullary cavity. Females and small juvenile males lack bony elements but exhibit a conspicuous band of dense connective tissue located about the anterior and lateral margins of the cloacal sacs. As males grow and attain sexual maturity, the medial post‐cloacal bones condense in this band of dense connective tissue, and are thus shown to be dermal ossifications, similar to osteoderms but with muscular associations (although this is also known for crocodylians). Based upon ontogenetic data we set forth a scenario to explain the loss of the medial post‐cloacal bones in various lineages. Differential staining of the cloacal sacs failed to reveal any specialized glandular structures. Investigation of the post‐cloacal spurs shows them to be associated with cellular connective tissue of a type similar to that found in the vicinity of the medial post‐cloacal bones. This suggests that the lateral post‐cloacal bones may also be dermal bones, but histological evidence is needed to corroborate this. J. Morphol. 277:264–277, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
Comment on: Tanaka Y, et al. Proc Natl Acad Sci USA 2012; 109:4515-20.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号