首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2014年   1篇
  2010年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
J蛋白(J-domain protein)是一类分子中含有J结构域的蛋白质大家族,大部分J蛋白具有分子伴侣的功能。J蛋白作为热休克蛋白70(HSP70)的同伴蛋白与HSP70组成分子伴侣机器,参与蛋白质分子折叠、组装、转运以及信号转导等多种细胞过程。此外,J蛋白在植物对环境胁迫的反应及其他生理过程中起重要作用。  相似文献   
2.
Hsc70与auxilin蛋白组成的系统是Hsp70/Hsp40分子伴侣系统家族的一员,在热休克反应中发挥重要作用。本文为得出auxilin蛋白J结构域的关键氨基酸,首先采用由二硫键交联的Hsc70 R171C与auxilin D876C的复合物结晶结构作为初始模型,进行分子动力学模拟,通过比较平衡后的结合部位发现,将形成二硫键的氨基酸突变为原来的氨基酸结构在结合位点上与生化结果较为相近,之后利用此结构通过拉伸动力学模拟分析了auxilin蛋白J结构域与Hsc70的ATPase功能域的解离过程,并探讨了Hsc70与auxilin蛋白之间的相互作用力。结果表明位于HPD loop上的His874,Asp876,Thr879,螺旋Ⅲ上的Glu884,Asn895,Asp896,Ser899,Glu902,Asn903为关键氨基酸,这些数据符合之前核磁共振实验证实的T抗原J结构域的HPD基序和螺旋Ⅲ与Hsc70的ATPase功能域之间的相互作用。  相似文献   
3.
Tomkiewicz D  Nouwen N  Driessen AJ 《FEBS letters》2007,581(15):2820-2828
Protein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding. Since motor proteins are found either at the cis- or trans-side of the membrane, different mechanisms for translocation have been proposed. In the Power stroke model, cis-acting motors are thought to push, while trans-motors pull on the substrate protein during translocation. In the Brownian ratchet model, translocation occurs by diffusion of the unfolded polypeptide through the translocation pore while directionality is achieved by trapping and refolding. Recent insights in the structure and function of the molecular motors suggest that different mechanisms can be employed simultaneously.  相似文献   
4.
CbpA, one of the Escherichia coli DnaJ homologues, acts as a co-chaperone in the DnaK chaperone system. Despite its extensive similarity in domain structure and function to DnaJ, CbpA has a unique and specific regulatory mechanism mediated through the small protein CbpM. Both CbpA and CbpM are highly conserved in bacteria. Earlier studies showed that CbpM interacts with the N-terminal J-domain of CbpA inhibiting its co-chaperone activity but the structural basis of this interaction is not known. Here, we have combined NMR spectroscopy, site-directed mutagenesis and surface plasmon resonance to characterize the CbpA/CbpM interaction at the molecular level. We have determined the solution structure of the CbpA J-domain and mapped the residues that are perturbed upon CbpM binding. The NMR data defined a broad region on helices α2 and α3 as involved in the interactions. Site-directed mutagenesis has been used to further delineate the CbpA J-domain/CbpM interface. We show that the binding sites of CbpM and DnaK on CbpA J-domain overlap, which suggests a competition between DnaK and CbpM for binding to CbpA as a mechanism for CbpA regulation. This study also provides the explanation for the specificity of CbpM for CbpA versus DnaJ, by identifying the key residues for differential binding.  相似文献   
5.
6.
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.  相似文献   
7.
拟南芥AtJ2和AtJ3基因表达对环境胁迫的响应   总被引:3,自引:0,他引:3  
用PCR的方法获得AtJ2和AtJ3基因的3'非编码区的核甘酸片段作为探针,Northern杂交结果表明:AtJ2和AtJ3基因在植物的根、茎、叶、花蕾、花和长角果中都有表达,并在植物整个生长周期中都有表达,但随着植株的衰老表达量有所下降.不同环境胁迫的实验结果表明:热激使AtJ2和AtJ3基因的表达迅速升高;冷胁迫也能诱导这两个基因表达的明显增加,但需要的时间比热激要长得多,达9 h;水分胁迫能引起AtJ2和AtJ3基因表达量的微弱增加;可盐胁迫对AtJ2和AtJ3基因的表达没有影响.说明AtJ2和AtJ3基因可能参与对除盐胁迫以外多种环境刺激的响应.  相似文献   
8.
9.
The vesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis of thylakoid membranes in cyanobacteria and plants. VIPP1 and its bacterial ancestor PspA form large homo-oligomeric rings of >1 MDa. We recently demonstrated that VIPP1 interacts with the chloroplast J-domain co-chaperone CDJ2 and its chaperone partner HSP70B, and hypothesized that the chaperones might be involved in the assembly and/or disassembly of VIPP1 oligomers. To test this hypothesis, we analysed the composition of VIPP1/chaperone complexes in Chlamydomonas reinhardtii cell extracts and monitored effects of the chaperones on VIPP1 assembly states in vitro. We found that CGE1, the chloroplast GrpE homologue, is also part of complexes with HSP70B, CDJ2 and VIPP1. We observed that CDJ2-VIPP1 accumulated as low- and high-molecular-weight complexes in ATP-depleted cell extracts, but as intermediate-size complexes in extracts supplemented with ATP. This was consistent with a role for the chaperones in VIPP1 assembly and disassembly. Using purified proteins, we could demonstrate that the chaperones indeed facilitated both the assembly and disassembly of VIPP1 oligomers. Electron microscopy studies revealed that, in contrast to PspA, VIPP1 rings assembled into rod-shaped supercomplexes that were morphologically similar to microtubule-like structures observed earlier in various plastid types. VIPP1 rods, too, were disassembled by the chaperones, and chaperone-mediated rod disassembly also occurred when VIPP1 lacked an approximately 30-aa C-terminal extension present in VIPP1 homologues but absent in PspA. By regulating the assembly state of VIPP1, the chloroplast HSP70 chaperone system may play an important role in the maintenance/biogenesis of thylakoid membranes.  相似文献   
10.
Arabidopsis cDNAs encoding ATJ11, the smallest known J-domain protein, have been isolated and characterized. The precursor protein of 161 amino acid residues was synthesized in vitro and imported by isolated pea chloroplasts where it was localized to the stroma and cleaved to a mature protein of 125 amino acid residues. The mature protein consists of an 80 amino acid J-domain, and N- and C-terminal extensions of 24 and 21 amino acid residues, respectively, which show no similarity to regions in other DnaJ-related proteins. ATJ11 produced in Escherichia coli stimulated the weak ATPase activity of E. coli DnaK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by DnaK, DnaJ and GrpE. ATJ11 is encoded by a single-copy gene on chromosome 4, and is expressed in all plant organs examined. A paralogue of ATJ11, showing 72% identity, is encoded in a 4.5 Mb duplication of chromosome 4 on chromosome 2. These proteins represent a novel class of J-domain proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号