首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   6篇
  2023年   4篇
  2022年   3篇
  2021年   11篇
  2020年   4篇
  2019年   20篇
  2018年   13篇
  2017年   18篇
  2016年   8篇
  2015年   4篇
  2014年   17篇
  2013年   18篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   11篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有206条查询结果,搜索用时 718 毫秒
1.
Summary Flies (Musca domestica) avoid danger by initiating a rapid jump followed by flight. To identify the visual cues that trigger the escape response in the housefly, we measured the timing and probability of escapes when the fly was presented with a variety of visual stimuli created by moving targets toward it. Our results show that an escape response is triggered by an approaching dark disk, but not by a receding dark disk. On the other hand, a bright disk elicits escape only when it recedes. A disk with black and white rings is less effective at eliciting escape than is a dark solid disk of the same size. This indicates that the darkening contrast produced by an approaching stimulus is a more crucial parameter than expansion cues contained in the optical flow. Escape is also triggered by a horizontally moving dark edge, but not by a moving bright edge or by a grating. An examination of several visual parameters reveals that the darkening contrast, measured from the onset of stimulation to the start of escape is nearly constant for a variety of stimuli that trigger escape reliably. Thus darkening contrast, coupled with motion may be crucial in eliciting the visually evoked escape response. Other visual parameters such as time-to-contact or target angular velocity seem to be relatively unimportant to the timing of escapes.Abbreviations P s Probability of successful escape - r disk radius of disk target - r arena radius of shielding arena - v disk linear velocity of disk target - v edge linear velocity of edge - d disk angular velocity of disk target boundary - edge angular velocity of edge - escape target distance at escape - d start target distance before onset of target movement - h edge height of the edge above fly - x start distance from corner of triangle to start position of edge (0 or 50 mm) - x escape distance from corner of triangle to the position of the edge when the fly escapes - x center distance from corner of triangle to point above the center of the pad - x total distance from the corner of the triangle to the base (height of triangle = base of triangle)  相似文献   
2.
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
1.  The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).
2.  Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.
3.  The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).
4.  The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).
  相似文献   
3.
Summary In tethered flying houseflies (Musca domestica), the yaw torque produced by the wings is accompanied by postural changes of the abdomen and hindlegs. In free flight, these body movements would jointly lead to turning manoeuvres of the animal. By recording the yaw torque together with the lateral deflections of either the abdomen or the hindlegs, it is shown that these motor output systems act in a highly synergistic way during two types of visual orientation behavior, compensatory optomotor turning reactions and orientation turns elicited by moving objects. This high degree of coordination is particularly conspicuous for the pathway activated by moving objects. Here, orientation responses either may be induced or may fail to be generated always simultaneously in all three motor output systems. This suggests that the pathway mediating orientation turns towards objects is gated before it segregates into the respective motor control systems of the wings, the abdomen and the hindlegs.  相似文献   
4.
对蟾蜍的56个视顶盖神经元的视觉反应进行了定量考察和分析,发现它们不仅对黑目标起反应,也对结构目标起反应.同相运动的结构背景使53.5%的神经元的反应完全抑制,而异相运动则只有10%的神经元完全被抑制,却有21.6%的神经元反应增强.遮盖感受野(RF)中心区,则同相运动使某些细胞脱抑制,而异相运动使其抑制强度稍有增强.遮盖RF的外周区,几乎全部研究过的神经元对结构背景运动本身也起反应。本研究还发现,如果预先将一目标放在兴奋性感受野(ERF)中央静止不动,并使结构背景在水平方向匀速移动较长时间后突然停止运动,则被研究过的66个视盖神经元中有29个发放一串脉冲,即神经元的运动后放电.各个神经细胞放电的脉冲多寡不一。若在ERF中央不放置静止目标,仅是结构背景的水平运动不能诱发放电.此效应的出现,既与目标背景间反差符号(即目标为白色或黑色)无关,也与背景的运动方向无关。为诱发这一效应,不仅要求背景运动时间较长(至少在20秒以上),而且目标的面积要有足够大。  相似文献   
5.
建立了一个探讨灵长类视皮层从V1区到MT区的运动信息加工原理的计算模型,这个过程的突出特征是视觉运动信息经过了从局部检测进步到整体感知。模型的第一层由用于抽提运动模式的局部速度以及结构性质的Reichardt运动检测器组成,进一步的加工是通过Boltzmann Machine神经网络来实现的。这种网络的学习算法具有局部更新的显著性质,在学习阶段,网络不断地修改联结权重以形成对于记录在网络的显单元上  相似文献   
6.
A cinematographic method of biomechanical motion analysis is presented which permits the determination of body segment forces and joint moments of force, and thereby dominant muscle action. An analysis of the horizontal leap of Cercopithecus is used as an example of the utility of this approach in the area of functional morphology. Kinematic and kinetic data are presented and discussed in terms of the biomechanical requirements of this form of locomotion. The importance of a consideration of inertial as well as gravitational forces in an analysis of positional behavior involving body motion is stressed.  相似文献   
7.
Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32 mm to 16.87 mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement.  相似文献   
8.
Neck pain is a prevalent condition and clinical examination techniques are limited and unable to assess out-of-plane motion. Recent works investigating cervical kinematics during neck circumduction (NC), a dynamic 3D task, has shown the ability to discern those with and without neck pain. The purposes of this study were to establish 1) confidence and prediction intervals of head-to-torso kinematics during NC in a healthy cohort, 2) a baseline summative metric to quantify the duration and magnitude of deviations outside the prediction interval, and 3) the reliability of NC. Thirty-nine participants (25.6 ± 6.3 years, 19F/20M) without neck pain completed left and right NC. A two-way smoothing spline analysis of variance was utilized to determine the mean-fitted values and 90% confidence and prediction intervals for NC. A standardized effect size was calculated and aggregated across all axes (Delta RMSD aggregate), as a summative metric of motion quality. Confidence and prediction intervals were comparable for left and right NC and demonstrated excellent reliability. The average sum of the Delta RMSD aggregate was 2.76 ± 0.55 for left NC and 2.74 ± 0.63 for right NC. The results of this study demonstrate the feasibility of utilizing normative intervals of a NC task to assess head-to-torso kinematics.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号