首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   64篇
  国内免费   19篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   13篇
  2019年   21篇
  2018年   17篇
  2017年   19篇
  2016年   27篇
  2015年   19篇
  2014年   31篇
  2013年   36篇
  2012年   23篇
  2011年   24篇
  2010年   22篇
  2009年   21篇
  2008年   23篇
  2007年   18篇
  2006年   18篇
  2005年   23篇
  2004年   21篇
  2003年   16篇
  2002年   19篇
  2001年   16篇
  2000年   14篇
  1999年   8篇
  1998年   15篇
  1997年   8篇
  1996年   12篇
  1995年   11篇
  1994年   9篇
  1993年   13篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有603条查询结果,搜索用时 203 毫秒
1.
2.
Summary Vegetative incompatibility is a lethal reaction that destroys the heterokaryotic cells formed by the fusion of hyphae of non-isogenic strains in many fungi. That incompatibility is genetically determined is well known but the function of the genes triggering this rapid cell death is not. The two allelic incompatibility genes, s and S, of the fungus Podospora anserina were characterized. Both encode 30 kDa polypeptides, which differ by 14 amino acids between the two genes. These two proteins are responsible for the incompatibility reaction that results when cells containing s and S genes fuse. Inactivation of the s or S gene by disruption suppresses incompatibility but does not affect the growth or the sexual cycle of the mutant strains. This suggests that these incompatibility genes have no essential function in the life cycle of the fungus.  相似文献   
3.
In ascomycetes vegetative incompatibility can prevent the somatic exchange of genetic material between conspecifics. It must occur frequently in natural populations, since in all species studied many vegetative compatibility groups (VCGs) are found. Using a population-genetic approach, this paper explores two possible selective explanations for the evolution of vegetative incompatibility in asexual fungi: selection by a nuclear parasitic gene, and selection by a harmful cytoplasmic element. In a deterministic model, assuming a random spatial distribution of VCGs in an infinitely sized population, it is found that neither of these forms of frequency-dependent selection can explain the large number of VCGs found in nature. The selective pressure for more VCGs disappears once a limited number of VCGs exist, because the frequency of compatible interactions decreases when the number of VCGs increases. In comparing the two selective explanations, selection by a cytoplasmic element seems a more plausible explanation than selection by a nuclear gene.  相似文献   
4.
Plasmid curing in bacteria   总被引:5,自引:0,他引:5  
  相似文献   
5.
In theory, adaptive divergence can increase intrinsic post‐zygotic reproductive isolation (RI), either directly via selection on loci associated with RI, or indirectly via linkage of incompatibility loci with loci under selection. To test this hypothesis, we measured RI at five intrinsic post‐zygotic reproductive barriers between 18 taxa from the genera Cakile and Erucaria (Brassicaceae). Using a comparative framework, we tested whether the magnitude of RI was associated with genetic distance, geographic distance, ecological divergence and parental mating system. Early stages of post‐zygotic RI related to F1 viability (i.e. initial seed set) tended to be stronger than later stages related to F1 fecundity (i.e. flower number, fruit number). Mating system significantly influenced early stages of RI, such that RI was lowest when the mother was selfing and father was outcrossing, consistent with an imbalance between sink strength and resistance to provisioning. We found little evidence that adaptive divergence accelerates the evolution of intrinsic post‐zygotic RI, consistent with a nonecological model of evolution that predicts the nonlinear accumulation of RI and RI asymmetry with time (i.e. genetic distance), irrespective of adaptive divergence. Thus, although certain aspects of ecological divergence do not appear to have contributed strongly to the evolution of RI in this system, divergence in mating system actually reduced RI, suggesting that mating system evolution may play a significant role in speciation dynamics.  相似文献   
6.
Although cytoplasmic incompatibilities have been used as a means of eradicating the mosquito Culex pipiens, the population dynamics of these sterilities in relation to the coexistence of multiple incompatible cytotypes in a single area has not been investigated, except in the case of two unidirectionally incompatible cytotypes. An analytical model of the evolution of n cytotypes in an infinite panmictic population has been developed in order to investigate polymorphic equilibrium. A necessary criterion for the stability of such an equilibrium is established; it is shown that a stable polymorphism cannot exist between incompatible cytotypes. This result is discussed in the light of population dynamics and genetics of Culex pipiens, and of our present knowledge on incompatibilities. The consequences of a geographic structuring and of homogamy are considered. A careful reconsideration of previous experimental results disclosed probable nuclear effects and a serious experimental weakness: with the common procedure of backcrossing hybrid females to males of constant genotype it is not possible to rule out probable nuclear effects with paternal expression. It is concluded that incompatibilities in Culex pipiens may have a nuclear-cytoplasmic determinism.  相似文献   
7.
Fitness traits of three Drosophila simulans strains infected by endocellular bacteria belonging to the genus Wolbachia have been compared with those of replicate stocks previously cured from the infection by an antibiotic treatment. The traits measured were development time, egg-to-adult viability, egg hatch, productivity, fecundity, and the number of functional ovarioles. Individuals of the first strain were bi-infected by two Wolbachia variants, wHa and wNo. The second strain was infected by wHa, the third one by wNo. The Wolbachia studied here cause cytoplasmic incompatibility (CI), a high embryonic mortality (70% to > 90%) when an infected male is crossed with an uninfected female. Three generations after antibiotic treatment, we observed in all strains a significant drop in productivity in the cured stocks. This drop was not due to antibiotic toxicity and was associated with the loss of the Wolbachia. However the effect had disappeared in two of the three strains five generations after treatment, and could not be found in the third strain in a third measurement carried out 14 generations after treatment. The temporary nature of the productivity difference indicates that Wolbachia do not enhance productivity in infected strains. On the other hand, in all traits measured, our results show the absence of any negative effects of the Wolbachia on their host. This could be explained when considering Wolbachia evolution, as maternally transmitted parasites bear a strong selective pressure not to harm their female host. However, CI would allow the bacteria to be maintained even when harming the female. The apparent absence of deleterious effects caused by these Wolbachia might result from a trade-off, where a relatively low bacteria density would advantage the Wolbachia by suppressing any deleterious effects on the female host, at the cost of a weaker maternal transmission rate of the infection.  相似文献   
8.
We developed eight polymorphic microsatellite simple sequence repeat (SSR) loci from genomic DNA of a clonal perennial herb, Convallaria keiskei, using a dual‐suppression‐polymerase chain reaction (PCR) technique and an improved technique. These markers with four to 10 alleles per locus identified 29 genotypes in 82 samples collected from a population in Hokkaido, Japan. The observed and expected heterozygosities ranged from 0.241 to 0.862 and from 0.639 to 0.825, respectively. These SSR markers will be available to identify genets and evaluate genetic diversity of C. keiskei.  相似文献   
9.
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre‐ and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC‐heterozygous and MHC‐homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC‐heterozygous and MHC‐homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC‐homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity.  相似文献   
10.
The wild tomato relative Solanum sitiens is a xerophyte endemic to the Atacama Desert of Chile and a potential source of genes for tolerance to drought, salinity and low‐temperature stresses. However, until recently, strong breeding barriers prevented its hybridization and introgression with cultivated tomato, Solanum lycopersicum L. We overcame these barriers using embryo rescue, bridging lines and allopolyploid hybrids, and synthesized a library of introgression lines (ILs) that captures the genome of S. sitiens in the background of cultivated tomato. The IL library consists of 56 overlapping introgressions that together represent about 93% of the S. sitiens genome: 65% in homozygous and 28% in heterozygous (segregating) ILs. The breakpoints of each segment and the gaps in genome coverage were mapped by single nucleotide polymorphism (SNP) genotyping using the SolCAP SNP array. Marker‐assisted selection was used to backcross selected introgressions into tomato, to recover a uniform genetic background, to isolate recombinant sub‐lines with shorter introgressions and to select homozygous genotypes. Each IL contains a single S. sitiens chromosome segment, defined by markers, in the genetic background of cv. NC 84173, a fresh market inbred line. Large differences were observed between the lines for both qualitative and quantitative morphological traits, suggesting that the ILs contain highly divergent allelic variation. Several loci contributing to unilateral incompatibility or hybrid necrosis were mapped with the lines. This IL population will facilitate studies of the S. sitiens genome and expands the range of genetic variation available for tomato breeding and research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号