首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11635篇
  免费   1097篇
  国内免费   567篇
  2023年   192篇
  2022年   123篇
  2021年   271篇
  2020年   372篇
  2019年   465篇
  2018年   362篇
  2017年   423篇
  2016年   390篇
  2015年   418篇
  2014年   576篇
  2013年   733篇
  2012年   439篇
  2011年   502篇
  2010年   429篇
  2009年   642篇
  2008年   699篇
  2007年   728篇
  2006年   594篇
  2005年   573篇
  2004年   488篇
  2003年   370篇
  2002年   398篇
  2001年   335篇
  2000年   331篇
  1999年   311篇
  1998年   294篇
  1997年   196篇
  1996年   175篇
  1995年   254篇
  1994年   179篇
  1993年   160篇
  1992年   164篇
  1991年   127篇
  1990年   121篇
  1989年   70篇
  1988年   64篇
  1987年   50篇
  1986年   41篇
  1985年   41篇
  1984年   45篇
  1983年   33篇
  1982年   36篇
  1981年   17篇
  1980年   15篇
  1979年   13篇
  1978年   14篇
  1977年   11篇
  1976年   9篇
  1975年   3篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Aims   总被引:2,自引:0,他引:2       下载免费PDF全文
森林生物碳储量作为森林生态系统碳库的重要组成部分,在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象,通过外业样地调查与室内实验分析相结合的方法,从林分尺度对林分生物量与碳密度进行计量,分析了林分生物碳储量的空间分配格局,并对林分年固碳能力与碳汇潜力进行了探讨。结果表明:小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为:蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var.mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为:红松林31.4、74.7、118.4和130.2 t·hm–2;兴安落叶松林28.9、44.3、74.2和113.3 t·hm–2;樟子松林22.8、52.0、71.1和92.6 t·hm–2;云冷杉林23.1、44.1、77.6和130.3 t·hm–2;白桦林18.8、35.3、66.6和88.5 t·hm–2;蒙古栎林25.0、20.0、47.5和68.9 t·hm–2;山杨林19.8、28.7、43.7和76.6 t·hm–2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高,其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加,但不同林型的碳汇功能存在差异,同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4–2.8 t·hm–2之间,碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差,幼龄林和中龄林所占的比重较大,具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   
2.
Autophagy is an important catabolic program to respond to a variety of cellular stresses by forming a double membrane vesicle, autophagosome. Autophagy plays key roles in various cellular functions. Accordingly, dysregulation of autophagy is closely associated with diseases such as diabetes, neurodegenerative diseases, cardiomyopathy, and cancer. In this sense, autophagy is emerging as an important therapeutic target for disease control. Among the autophagy machineries, PIK3C3/VPS34 complex functions as an autophagy-triggering kinase to recruit the subsequent autophagy protein machineries on the phagophore membrane. Accumulating evidence showing that inhibition of PIK3C3/VPS34 complex successfully inhibits autophagy makes the complex an attractive target for developing autophagy inhibitors. However, one concern about PIK3C3/VPS34 complex is that many different PIK3C3/VPS34 complexes have distinct cellular functions. In this study, we have developed an in vitro PIK3C3/VPS34 complex monitoring assay for autophagy inhibitor screening in a high-throughput assay format instead of targeting the catalytic activity of the PIK3C3/VPS34 complex, which shuts down all PIK3C3/VPS34 complexes. We performed in vitro reconstitution of an essential autophagy-promoting PIK3C3/VPS34 complex, Vps34–Beclin1–ATG14L complex, in a microwell plate (96-well format) and successfully monitored the complex formation in many different conditions. This PIK3C3/VPS34 complex protein assay would provide a reliable tool for the screening of autophagy-specific inhibitors.  相似文献   
3.

Background and Aims

The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional–structural model is presented and is used to assess the effects of management on forest functioning at a national scale.

Methods

The stand process-based model (PBM) Castanea was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled Castanea–SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth.

Key Results

The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the Castanea PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale.

Conclusions

This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield  相似文献   
4.
Abstract: Age-related changes in the expression of Na,K-ATPase α1- and α3-isoform mRNAs were analyzed by in situ hybridization in the Fischer-344 rat hippocampus. Quantification of signal density with cRNA probes in rat hippocampus at 3 months of age showed (a) α1 content is 1.5 times higher in granule than in pyramidal cell layers, whereas α3 content shows the opposite ratio and (b) α3 label is found in large clusters related to mossy cells and basket cells and in medium clusters corresponding to interneurons within the dendritic fields of CA1–3. In the 24-month-old rats as compared with the young animals, the α1 signal is increased more than sevenfold in the dendritic fields and is not significantly changed in perikaryal layers. The α3 signal is reduced about threefold ( p < 0.0001, ANOVA, n = 6) in perikaryal layers, is almost completely absent over the interneurons, basket cells, and mossy cells, and is not significantly changed in dendritic fields. These data indicate age-related, cell- and isoform-specific alterations in pretranslational regulation of Na,K-ATPase α isoforms. The striking changes in the dendritic fields, mossy cells, and GABAergic basket cells and interneurons may constitute early and sensitive markers for age-related alterations in hippocampal function, before cell loss.  相似文献   
5.
Subunit-specific antibodies to all the γ subunit isoforms described in mammalian brain (γ1, γ2S, γL, and γ3) have been made. The proportion of GABAA receptors containing each γ subunit isoform in various brain regions has been determined by quantitative immunoprecipitation. In all tested regions of the rat brain, the γ1, and γ3 subunits are present in considerable smaller proportion of GABAA receptor than the γ2 subunit. Immunocytochemistry shows that γ1 immunoreactivity concentrates in the stratum oriens and stratum radiatum of the CA1 region of the hippocampus. In the dentate gyrus, γ1 immunoreactivity concentrates on the outer 2/3 of the molecular layer coinciding with the localization of the axospinous synapses of the perforant pathway. In contrast, γ3 immunoreactivity concentrates on the basket cells and other GABAergic local circuit neurons of the hilus. These cells are also rich in γ2S. In the cerebellu, γ1 immunolabeling was localized on the Bergmann glia. The γ2S and γ2L subunits are differentially expressed in various brain regions. Thus the γ2S is highly expressed in the olfactory bulb and hippocampus whereas the γ2L is very abundant in inferior colliculus and cerebellum, particularly in Purkinje cells, as immunocytochemistry, in situ hybridization and immunoprecipitation techniques have revealed. The γ2S and γ2L coexist in some brain areas and cell types. Moreover, the γ2S and γ2L subunits can coexist in the same GABAA receptor pentamer. We have shown that this is the case in some GABAA receptors expressed in cerebellar granule cells. These GABAA receptors also have α and β subunits forming the pentamer. Immunoblots have shown that the rat γ1, γ2S, γ2L and γ3 subunits are peptides of 47, 45, 47 and 44 kDa respectively. Results also indicate that there are aging-related changes in the expression of the γ2S and γ2L subunits in various brain regions which suggest the existence of aging-related changes in the subunit composition of the GABAA receptors which in turn might lead to changes in receptor pharmacology. The results obtained with the various γ subunit isoforms are discussed in terms of the high molecular and binding heterogeneity of the native GABAA receptors in brain. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   
6.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   
7.
Anin vitro selection system using microcross sections of banana and plantain cultivars belonging to AAA and AAB genomic groups were used to produce plants resistant against the Black Sigatoka disease. The fungus resistant plantlets were obtained in a double selection system. This involved in a first step the use of a fungal crude filtrate and in the second step the purified host-specific toxin 2,4,8-trihydroxytetralone extracted from the fungusMycosphaerella fijiensis (M. fijiensis), the causal agent of Black Sigatoka disease. Resistant plantlets obtained from the double selection system were inoculated with conidia ofM. fijiensis in a growth chamber to reproduce Black Sigatoka symptoms. Compared to non-treated control plantlets, which were highly susceptible to the fungus, 10.7–19.3% toxin-resistant plantlets which arose from tissues that went through the double selection system were resistant againstM. fijiensis. This technique of using micro-cross sections for selection on fungal toxins seems to be amenable to differentMusa genotypes for the production of fungus-resistant plants.F. A. Schulz died 11. 3. 1995  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号