首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2019年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials.Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.  相似文献   
2.
Huang J  Yuan L  Wang X  Zhang TL  Wang K 《Life sciences》2007,81(10):832-840
Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.  相似文献   
3.
A new compound, pheglycoside A (1), along with four known aromatic glycosides (2-5) and three known lignan glycosides (68) were isolated from Streblus ilicifolius (Vidal) Corner. The structure of compound 1 was determined by spectral analyses, including HRESIMS, 1D, and 2D NMR (COSY, HSQC, and HMBC) experiments. The absolute configuration of compound 1 was determined using the CD spectrum and experiment data. From the present investigation, all these compounds were isolated for the first time from S. ilicifolius. It is interesting that phenylpropanoid glycoside and aromatic glycosides are reported for the first time in the genus Streblus. The chemotaxonomic significance of these compounds was summarized.  相似文献   
4.
Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization. Therefore, the regulation of ketone body uptake and metabolism may have beneficial effects on heart injuries that induce cardiac remodelling. In this study, we investigated whether icariside II (ICS II) protects against cardiac hypertrophy in mice and cardiomyocytes. To create cardiac hypertrophy animal and cell models, mice were subjected to transverse aortic constriction (TAC), and embryonic rat cardiomyocytes (H9C2) were stimulated with angiotensin II, a neurohumoral stressor. Both the in vivo and in vitro results suggest that ICS II treatment ameliorated pressure overload–induced cardiac hypertrophy and preserved heart function. In addition, apoptosis and oxidative stress were reduced in the presence of ICS II. Moreover, ICS II inhibited excess autophagy in TAC-induced hearts and angiotensin II–stimulated cardiomyocytes. Mechanistically, we found that ICS II administration regulated SIRT3 expression in cardiac remodelling. SIRT3 activation increased ketone body transportation and utilization. Collectively, our data show that ICS II attenuated cardiac hypertrophy by modulating ketone body and fatty acid metabolism, and that this was likely due to the activation of the SIRT3-AMPK pathway. ICS II treatment may provide a new therapeutic strategy for improving myocardial metabolism in cardiac hypertrophy and heart failure.  相似文献   
5.
This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO.  相似文献   
6.
为阐明降香檀(Dalbergia odorifera T. Chen)叶的化学成分,采用色谱分离方法,从叶的醇提和水煮液中得到8个非黄酮类化合物。经理化性质和波谱分析,分别鉴定为(3S)-6,7-二羟基-6,7-二氢芳樟醇(1)、淫羊藿次苷B1 (2)、淫羊藿次苷B6 (3)、淫羊藿次苷F2 (4)、苯甲醇β-巣菜糖苷(5)、苯乙醇β-巣菜糖苷(6)、2,3-丁二醇2-O-β-D-葡萄糖苷(7)和腺嘌呤(8)。化合物1为单萜、2和3为大柱香波龙烷糖苷、4~6为芳基糖苷、7为烷基糖苷、8为嘌呤,均为首次从该植物中报道。  相似文献   
7.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   
8.
《Phytomedicine》2014,21(12):1633-1637
Increasing evidence shows the therapeutic superiority of herbal extracts in comparison to isolated single constituents. One of the reasons may be attributed to the synergy effect of compound combinations. Flavonoids from Herba Epimedii have been shown to have therapeutic effect against bone loss. Our previous study showed that Icariside II inhibited pre-osteoclast RAW264.7 growth. The aim of this study was to investigate whether the activity of Icariside II is synergized by other components of Herba Epimedii. The inhibitory activity of Icariside II was significantly enhanced in the presence of the extract of Herba Epimedii (EHE) at the ratio of 1:1, 1:5 and 1:10. Icaritin, another flavonoid constituent, was shown here to inhibit RAW264.7 growth in a dose-dependent manner. Further, we found that Icariside II, together with Icaritin, synergistically inhibited RAW264.7 growth. The synergistic effect is significant when the ratio of Icariside II and Icaritin was 10:1, 5:1, 1:1, 1:2, and 1:5, respectively. In conclusion, Icaritin were an active component. The inhibitory activity of Icariside II on pre-osteoclast RAW264.7 growth was synergized by Icaritin, which maybe contribute to the efficiency of Herba Epimedii extract on curing bone-related diseases, such as osteoporosis  相似文献   
9.
The present study demonstrates that Icariside II (10, 20, and 40 µM) reduced Leydig cell testosterone production and cell viability in a concentration‐ and time‐dependent manner. Hoechst 33342/propidium iodide staining indicated that no morphological changes in Leydig cell nuclear chromatin occurred, caspase‐3 expression also showed no significant change, but cell death was caused by the 10‐µM Icariside II treatment. Furthermore, a significant reduction in NAD+ levels was observed following Icariside II exposure (10, 20, and 40 µM). Cell death was avoided when Icariside II treated cells were incubated with extracellular NAD+ (5 and 10 mM). Moreover, the addition of NAD+ (5 and 10 mM) could restore ATP production and prevent cell death. The results suggest that Icariside II can reduce testosterone production by inducing necrosis, but not apoptosis, in rat Leydig cells. This mechanism may also account for the Icariside II induced depletion of NAD+ and ATP levels. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:243‐250, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21481  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号