首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   66篇
  国内免费   42篇
  2024年   1篇
  2023年   33篇
  2022年   30篇
  2021年   65篇
  2020年   46篇
  2019年   52篇
  2018年   29篇
  2017年   21篇
  2016年   14篇
  2015年   19篇
  2014年   41篇
  2013年   54篇
  2012年   23篇
  2011年   38篇
  2010年   27篇
  2009年   33篇
  2008年   50篇
  2007年   44篇
  2006年   41篇
  2005年   25篇
  2004年   20篇
  2003年   23篇
  2002年   14篇
  2001年   11篇
  2000年   14篇
  1999年   13篇
  1998年   14篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   4篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有882条查询结果,搜索用时 15 毫秒
1.
《Cell》2021,184(24):5916-5931.e17
  1. Download : Download high-res image (238KB)
  2. Download : Download full-size image
  相似文献   
2.
《Cell》2021,184(26):6281-6298.e23
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   
3.
4.
5.
Classic findings have demonstrated an important role for sex steroids as regulators of aggression, but this relationship is lacking within some environmental contexts. In mammals and birds, the adrenal androgen dehydroepiandrosterone (DHEA), a non-gonadal precursor of biologically active steroids, has been linked to aggression. Although females, like males, use aggression when competing for limited resources, the mechanisms underlying female aggression remain understudied. Here, we propose a previously undescribed endocrine mechanism regulating female aggression via direct action of the pineal hormone melatonin on adrenal androgens. We examined this in a solitary hamster species, Phodopus sungorus, in which both sexes are highly territorial across the seasons, and display increased aggression concomitant with decreased serum levels of sex steroids in short ‘winter-like'' days. Short- but not long-day females had increased adrenal DHEA responsiveness co-occurring with morphological changes in the adrenal gland. Further, serum DHEA and total adrenal DHEA content were elevated in short days. Lastly, melatonin increased DHEA and aggression and stimulated DHEA release from cultured adrenals. Collectively, these findings demonstrate that DHEA is a key peripheral regulator of aggression and that melatonin coordinates a ‘seasonal switch’ from gonadal to adrenal regulation of aggression by direct action on the adrenal glands.  相似文献   
6.
Long noncoding RNAs (lncRNAs) play important roles in endothelium development. A lncRNA, LEF1-AS1, is recently emerging as a potent mediator of the proliferation and migration of a number of cells, including smooth muscle cells. However, the effects of LEF1-AS1 in atherosclerosis remains largely unknown. Specimens from patients with coronary artery atherosclerosis were collected. The quantitative real-time polymerase chain reaction was used to analyze levels of LEF1-AS1 and microRNA-544a (miR-544a). Western blot analysis was used to assess PTEN, P-Akt, and T-Akt protein expression. Proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 assay, scratch wound assay, and transwell assay, respectively. The interaction between LEF1-AS1, miR-544a, and PTEN was probed using bioinformatical analysis and dual-luciferase assay. In plasma and tissue of patients with coronary artery atherosclerosis, LEF1-AS1 was upregulated and miR-544a was downregulated. A negative correlation was found between LEF1-AS1 and miR-544a. miR-544a overexpression reversed the inhibition of LEF1-AS1 in smooth muscle cell proliferation and invasion, which were mediated through the PTEN pathway. LEF1-AS1 regulates smooth muscle cell proliferation and migration through the miR-544a/PTEN axis, indicating that LEF1-AS1 may be a potential therapeutic target in atherosclerosis.  相似文献   
7.
《Developmental cell》2021,56(20):2886-2901.e6
  1. Download : Download high-res image (265KB)
  2. Download : Download full-size image
  相似文献   
8.
9.
Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. Mice were subjected to a battery of stressors for 28 days. Etazolate (0.5 and 1 mg/kg, p.o.) and fluoxetine (20 mg/kg, p.o.) were administered during the last 21 days (8–28th) of the CUMS paradigm. The results showed that 4-weeks CUMS produces significant depression-like behavior in tail suspension test (TST) and partial anxiety-like behavior in elevated plus maze (EPM) and open field test (OFT). Stressed mice have also shown a significant high serum CORT and low BDNF level. Chronic treatment with etazolate (0.5 and 1 mg/kg., p.o.) and fluoxetine (20 mg/kg., p.o.) produced significant antidepressant-like behavior in TST (decreased duration of immobility), whereas, partial anxiolytic-like behavior in EPM (increased percentage of open arm entries) and OFT (increased % central ambulation score, total ambulation score and time spent in center zone). In addition, etazolate and fluoxetine treatment significantly (p < 0.05) increased the BDNF level and inhibited the hypothalamic–pituitary–adrenocortical (HPA) axis hyperactivity, as evidenced by low serum CORT level in stressed mice. In addition, etazolate and fluoxetine also showed significant antidepressant- and anxiolytic-like effects in normal control mice. In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any effect of etazolate and fluoxetine on CORT and BDNF levels in normal control mice. In conclusion, the results of the present study suggested compelling evidences that etazolate has more marked effect on depression-like behavior in mice, which is atleast in part may be related to their modulating effects on the HPA axis and BDNF level.  相似文献   
10.
An extremely low‐frequency magnetic field (ELF‐MF) is generated by power lines and household electrical devices. Many studies have suggested an association between chronic ELF‐MF exposure and anxiety and/or depression. The mechanism of these effects is assumed to be a stress response induced by ELF‐MF exposure. However, this mechanism remains controversial. In the present study, we investigated whether chronic ELF‐MF exposure (intensity, 3 mT; total exposure, 200 h) affected emotional behavior and corticosterone synthesis in mice. ELF‐MF‐treated mice showed a significant increase in total immobility time in a forced swim test and showed latency to enter the light box in a light–dark transition test, compared with sham‐treated (control) mice. Corticosterone secretion was significantly high in the ELF‐MF‐exposed mice; however, no changes were observed in the amount of the adrenocorticotropic hormone and the expression of genes related to stress response. Quantification of the mRNA levels of adrenal corticosteroid synthesis enzymes revealed a significant reduction in Cyp17a1 mRNA in the ELF‐MF‐exposed mice. Our findings suggest the possibility that high intensity and chronic exposure to ELF‐MF induces an increase in corticosterone secretion, along with depression‐ and/or anxiety‐like behavior, without enhancement of the hypothalamic–pituitary–adrenal axis. Bioelectromagnetics 34:43–51, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号