首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1989年   1篇
  1974年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
CD95 tyrosine phosphorylation is required for CD95 oligomerization   总被引:1,自引:0,他引:1  
Proapoptotic stimuli, such as CD95 ligand and hydrophobic bile acids induce an epidermal growth factor receptor (EGFR)-catalyzed tyrosine phosphorylation of CD95-death receptor in hepatocytes, as a prerequisite for CD95-translocation to the plasma membrane, formation of the death-inducing signalling complex and execution of apoptotic cell death. However, the molecular role played by CD95 tyrosine phosphorylation remained unclear. The present study shows that CD95-tyrosine phosphorylation is required for CD95-oligomerization. Fluorescence resonance energy transfer (FRET)-analysis in Huh7 hepatoma cells, which were cotransfected with CD95-YFP/CD95-CFP revealed that stimulation of these cells with CD95 ligand, proapoptotic bile acids or hyperosmolarity resulted within 30 min in an intracellular FRET-signal, suggestive for CD95/CD95-oligomerization. After 120 min the FRET-signal was detected in the plasma membrane, indicating translocation of the CD95/CD95-oligomer to the plasma membrane. CD95/CD95-oligomerization was abolished in presence of AG1478 or a JNK-inhibitory peptide, i.e. maneuvers known to prevent EGFR-catalyzed CD95-tyrosine phosphorylation. Transfection studies with YFP/CFP-coupled CD95-mutants, which contain tyrosine/phenylalanine-exchanges in positions 232 and 291 (CD95Y232,291F), revealed that at least one tyrosine (Y232,291)-phosphorylated CD95 is required for CD95/CD95-oligomerization. FRET-studies in mouse embryonic fibroblasts, which in contrast to Huh7 express endogenous CD95, revealed that EGF, but not CD95L induced EGFR-homomerization, whereas CD95 ligand, but not EGF resulted in EGFR/CD95-heteromerization. These findings suggest that EGFR-catalyzed CD95-tyrosine phosphorylation is involved in the CD95/CD95-oligomerization process, which is induced by proapoptotic stimuli and is required for apoptosis induction.  相似文献   
3.
An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity over time. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Supplementary material pertaining to this article is available on the Journal of Biosciences Website at  相似文献   
4.
Abstract: The possibility that clathrin plays a role in the agonist-mediated sequestration of muscarinic cholinergic receptors in human SH-SY5Y neuroblastoma cells has been investigated by the application of experimental paradigms previously established to perturb clathrin distribution and receptor cycling events. Preincubation of SH-SY5Y cells under hypertonic conditions resulted in a pronounced inhibition of agonist-induced muscarinic receptor sequestration (70–80% at 550 mOsm), which was reversed when cells were returned to isotonic medium. Depletion of intracellular K+ or acidification of the cytosol also resulted in >80% inhibition of muscarinic receptor sequestration. Under conditions of hypertonicity, depletion of intracellular K+, or acidification of cytosol, muscarinic receptor-stimulated phosphoinositide hydrolysis and Ca2+ signaling events were either unaffected or markedly less inhibited than receptor sequestration. That these same experimental conditions did perturb clathrin distribution was verified by immunofluorescence studies. Hypertonicity and depletion of intracellular K+ resulted in a pronounced accumulation of clathrin in the perinuclear region, whereas acidification of the cytosol resulted in the appearance of microaggregates of clathrin throughout the cytoplasm and at the plasma membrane. The results are consistent with the possibility that muscarinic receptors in SH-SY5Y cells are endocytosed via a clathrin-dependent mechanism.  相似文献   
5.
Changes in the levels of amino acids have been implicated as being important in osmoregulation both within and outside the CNS. The present study addressed the question of whether changes in osmolarity affect the extracellular concentration of amino acids in the rat hippocampus and femoral biceps muscle (FBM). Microdialysis probes were implanted in these tissues and perfused with standard physiological saline. Amino acid concentrations in the dialysate were determined with HPLC separation of o-phthaldialdehyde derivatives and fluorescence detection. The osmolarity of the perfusion buffer was gradually decreased by reduction of the concentration of NaCl from 122 to 61 to 0 mM. In other experiments, the osmolarity was increased by elevation of the NaCl level from 122 to 183 to 244 mM or by addition of mannitol. Glutamate, aspartate, gamma-aminobutyrate, and alanine levels in dialysate from the hippocampus increased when the concentration of NaCl was decreased by 61 mM, and they were further elevated when NaCl was omitted. Taurine and phosphoethanolamine (PEA) levels were maximally elevated at the intermediary decrease of NaCl concentration, and glutamine in particular but also methionine and leucine were suppressed by perfusion with hypoosmolar medium. The amino acid response of the FBM differed substantially from that of the hippocampus. The aspartate content increased slightly, and there was a marginal transient increase in PEA level. Perfusion with media containing high concentrations of NaCl induced diminished dialysate levels of taurine, PEA, and glutamate, whereas levels of other amino acids were either unaffected or increased. Mannitol administration via the perfusion fluid led to reduced levels of taurine, PEA, glutamate, and aspartate. In contrast to the effects of high NaCl levels, hyperosmotic mannitol did not induce increases in level of any of the amino acids detected. The results suggest that taurine and PEA are involved in osmoregulation in the mammalian brain. From a quantitative viewpoint, taurine seems to be most important. Transmitter amino acids may also be involved in the maintenance of the volume of neural cells subjected to severe disturbances in osmotic equilibrium.  相似文献   
6.
The effects of luminal hyperosmolarity on Na and Cl transport were studied in rumen epithelium of sheep. An increase of luminal osmotic pressure with mannitol (350 and 450 mosm/l) caused a significant increase of tissue conductance, G T, which is linearly correlated with flux rates of 51Cr-EDTA and indicates an increase of passive permeability. Studies with microelectrodes revealed, that an increase of the osmotic pressure caused a significant increase of the conductance of the shunt pathway from 1.23±0.10 (control) to 1.92±0.14 mS cm−2 (450 mosm/l) without a change of fractional resistance. Hyperosmolarity significantly increased J sm and reduced J net Na. The effect of hyperosmolarity on J ms Na is explained by two independent and opposed effects: increase of passive permeability and inhibition of the Na+/H+ exchanger. Hypertonic buffer solution induced a decrease of the intracellular pH (pHi) of isolated ruminal cells, which is consistent with an inhibition of Na+/H+ exchange, probably isoform NHE-3, because NHE-3-mRNA was detectable in rumen epithelium. These data are in contrast to previous reports and reveal a disturbed Na transport and an impaired barrier function of the rumen epithelium, which predisposes translocation of rumen endotoxins and penetration of bacteria.  相似文献   
7.
Novel insights into the osmotic stress response of yeast   总被引:1,自引:0,他引:1  
Response to hyperosmolarity in the baker's yeast Saccharomyces cerevisiae has attracted a great deal of attention of molecular and cellular biologists in recent years, from both the fundamental scientific and applied viewpoint. Indeed the underlying molecular mechanisms form a clear demonstration of the intricate interplay of (environmental) signalling events, regulation of gene expression and control of metabolism that is pivotal to any living cell. In this article we briefly review the cellular response to conditions of hyperosmolarity, with focus on the high-osmolarity glycerol mitogen-activated protein kinase pathway as the major signalling route governing cellular adaptations. Special attention will be paid to the recent finding that in the yeast cell also major structural changes occur in order to ensure maintenance of cell integrity. The intriguing role of glycerol in growth of yeast under (osmotic) stress conditions is highlighted.  相似文献   
8.
Taurine content of astrocytes is primarily regulated by transport from the extracellular medium and endogenous biosynthesis from cysteine. We have investigated the gene expression of the taurine transporter (TauT) and the taurine biosynthetic enzymes, cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSD), in astrocyte primary cultures in relationship to cell taurine content. TauT, CDO, and CSD mRNA levels were determined through quantitative RT-PCR. Cell taurine content was depleted by adapting the cells to a taurine-free chemically defined medium and increased by incubating the cells in the same medium containing exogenous taurine. With increased cell taurine content the level of TauT mRNA decreased, whereas the levels of CDO and CSD mRNA remained unchanged. In astrocytes exposed to a hyperosmotic medium the TauT mRNA level increased, whereas the CDO and CSD mRNA levels were not significantly altered. The osmolarity-induced up-regulation of TauT mRNA expression was fully prevented by increasing cell taurine content. Thus, the gene expression of the taurine transporter, but not that of the taurine biosynthetic enzymes, appears to be under the control of two antagonistic regulations, namely, a taurine-induced down-regulation and an osmolarity-induced up-regulation.  相似文献   
9.
目的:探讨SGLT2i类药物达格列净(dapagliflozin)对高渗诱导的人脐静脉内皮细胞(HUVECs)衰老的影响。方法:将HUVECs分为空白组(Blank组)、高渗330组(M-330组)、高渗350组(M-350组)、达格列净+高渗组(DAPA+M-350组),高渗培养环境由甘露醇诱导。衰老相关β-半乳糖苷酶(SA-β-Gal)染色检测细胞衰老情况;免疫荧光染色检测SGLT2表达变化;Western blot检测SGLT2、细胞衰老标志物p21的表达变化,JC-1染色试剂盒检测线粒体膜电位的变化。结果:免疫荧光染色和western blot结果显示,Blank组,M-330组及M-350组细胞上均存在SGLT2受体蛋白表达,且Blank组,M-330组及M-350组的SGLT2表达依次显著增加。与Blank组相比,M-350组SA-β-Gal胞质蓝染、染色阳性率、衰老蛋白p21及SGLT2表达显著增加,并伴有线粒体膜电位的显著下降(P0.05);DAPA+M-350组与M-350组相比,SA-β-Gal胞质蓝染、染色阳性率和p21表达显著下降,并伴有线粒体膜电位的显著上升(P0.05)。结论:HUVECs上存在SGLT2受体蛋白,且在300-350 m Osm/L范围内随着渗透压的升高而增加,达格列净可改善高渗所诱导的血管内皮细胞衰老,其机制可能与达格列净改善高渗导致的线粒体功能障碍有关。  相似文献   
10.
Hyperglycemia is involved in the diabetic complication of different organs and can elevate serum osmolarity. Here, we tested whether hyperosmolarity promoted by high glucose levels induces cellular senescence in renal cells. We treated Wistar rats with streptozotocin to induce diabetes or with consecutive daily injections of mannitol to increase serum osmolarity and analyzed p53 and p16 genes in renal cortex by immunohistochemistry. Both diabetic and mannitol treated rats showed a significant increase in serum osmolarity, without significant signs of renal dysfunction, but associated with increased staining for p53 and p16 in the renal cortex. An increase in p53 and p16 expression was also found in renal cortex slices and glomeruli isolated from healthy rats, which were later treated with 30 mM glucose or mannitol. Intracellular mechanisms involved were analyzed in cultured human glomerular mesangial cells treated with 30 mM glucose or mannitol. After treatments, cells showed increased p53, p21 and p16 expression and elevated senescence-associated β-galactosidase activity. Senescence was prevented when myo-inositol was added before treatment. High glucose or mannitol induced constitutive activation of Ras and ERK pathways which, in turn, were activated by oxidative stress. In summary, hyperosmolarity induced renal senescence, particularly in glomerular mesangial cells, increasing oxidative stress, which constitutively activated Ras-ERK 1/2 pathway. Cellular senescence could contribute to the organ dysfunction associated with diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号