首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   7篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
排序方式: 共有103条查询结果,搜索用时 46 毫秒
1.
Previous investigations showed that a high molecular mass, non-dialyzable material (NDM) from cranberries inhibits the adhesion of a number of bacterial species and prevents the co-aggregation of many oral bacterial pairs. In the present study we determined the effect of mouthwash supplemented with NDM on oral hygiene. Following 6 weeks of daily usage of cranberry-containing mouthwash by an experimental group (n = 29), we found that salivary mutans streptococci count as well as the total bacterial count were reduced significantly (ANOVA, P < 0.01) compared with those of the control (n = 30) using placebo mouthwash. No change in the plaque and gingival indices was observed. In vitro, the cranberry constituent inhibited the adhesion of Streptococcus sobrinus to saliva-coated hydroxyapatite. The data suggest that the ability to reduce mutans streptococci counts in vivo is due to the anti-adhesion activity of the cranberry constituent.  相似文献   
2.
The effect of chlorhexidine (CHX), a potent antibacterial agent, was tested on the molecular weight distribution (MWD) of fructans synthesized by cell-free fructosyltransferase (FTF) in solution in comparison to FTF immobilized onto hydroxyapatite (HA). Size-exclusion chromatography (SEC) analysis has shown that cell-free FTF, both in solution and immobilized on HA, produces both low MW (1.9-2.2 kDa) and high MW (913-1047 kDa) fructans. CHX at a concentration of 0.02% altered the MWD of the fructans by reducing the polydispersity ratio and changing the MWD of the fructans synthesized both by immobilized FTF and by FTF in solution. These changes of the fructans in the presence of CHX adds a new prospective to the anticaries effect of CHX in addition to its antibacterial properties.  相似文献   
3.
Spinal fusions are being performed for various pathologies of the spine. Stabilizing vertebral segments by eliminating motion across those segments becomes critical in dealing with pathologies of the spine that lead to instability. The use of autograft has been the gold standard for spine fusion. However, due to complications such as donor site morbidity, increased operating time, and limited supply, the use of allograft as a graft extender has become an acceptable practice especially in fusions spanning multiple segments. The discovery and isolation of novel proteins (i.e., bone morphogenetic proteins, BMPs), which initiate the molecular cascade of bone formation, have experimentally been shown in numerous animal studies to be as effective as autografts. Although the use of BMPs has exciting applications in spine surgery, long-term clinical studies must be evaluated for its efficacy in various applications in humans. The use of biomimetic materials such as hydroxyapatite (HA), or tricalcium phosphate (TCP) has also been examined in several animal models as bone graft substitutes or carriers. Although these materials have shown some promise in specific site applications, more work remains in elucidating an efficacious combination of these materials and BMPs that can be as effective as autografts. This review will present the status of bone grafts, bone morphogenetic proteins, gene therapy, and work that has been done to facilitate spinal fusion and simultaneously eliminate the need for bone graft. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Proteins and peptides containing the multiphosphorylated motif -Ser(P)-Ser(P)- Ser(P)--Glu-Glu- stabilise amorphous calcium phosphate (ACP) in body fluids and bind with high affinity to crystalline calcium phosphate phases such as hydroxyapatite (HA) regulating crystal growth. Binding of this motif to hydroxyapatite surfaces was investigated in this study using molecular modelling techniques. Using a three-step computational procedure, we have determined the relative binding energies of the motif Ser(P)-Ser(P)-Ser(P)-Glu-Glu to different crystalline surfaces of HA. This analysis revealed preferences of the motif for (100) and (010) surfaces of the crystal and preferences for particular orientations on a given surface. These preferences are principally governed by electrostatic interactions between the crystal lattice and the peptide with the most stable conformers adopting structures where alternate residues exhibit backbone angles characteristic of a -strand and values of an -helix or a distorted -helix, allowing maximal interaction between the acidic side groups and surface calciums. The results of this study are consistent with experimentally-derived data on the interaction of multiphosphorylated proteins/peptides with HA and have implications for the role of these proteins/peptides in calcium phosphate stabilisation and biomineralisation processes.Electronic Supplementary Material available.  相似文献   
5.
The effects of N,N-dicarboxymethyl chitosan (DCMC) on the precipitation of insoluble calcium salts, namely phosphate, sulfate, oxalate, carbonate, bicarbonate and fluoride, and magnesium salts, namely phosphate and carbonate, were studied. Results indicated that the chelating ability of DCMC interfered effectively with the well-known physico-chemical behaviour of magnesium and calcium salts. Dicarboxymethyl chitosan formed self-sustaining gels upon mixing with calcium acetate, as a consequence of calcium chelation. DCMC mixed with calcium acetate and with disodium hydrogen phosphate in appropriate ratios (molar ratio Ca/DCMC close to 2.4) yielded a clear solution, from which, after dialysis and freeze-drying, an amorphous material was isolated containing an inorganic component about one half its weight. This compound was used for the treatment of bone lesions in experimental surgery and in dentistry. Bone tissue regeneration was promoted in sheep, leading to complete healing of otherwise non-healing surgical defects. Radiographic evidence of bone regeneration was observed in human patients undergoing apicectomies and avulsions. The DCMC–CaP chelate favoured osteogenesis while promoting bone mineralization.  相似文献   
6.
The most challenging analytical task facing phosphoproteome determination requires the isolation of phosphorylated peptides from the myriad of unphosphorylated species. In the past, several strategies for phosphopeptide isolation have been proposed in combination with subsequent mass spectrometric investigations. Among these techniques, immobilized metal affinity chromatography and titanium dioxide have been recognized as the most effective. Here, we present an alternative method for the enrichment of phosphopeptides based on hydroxyapatite (HAP) chromatography. By taking advantage of the strong interaction of HAP with phosphate and calcium ions, we developed an efficient method for the selective separation and fractionation of phosphorylated peptides. The effectiveness and efficiency of recovery for this procedure was assayed using tryptic digests of standard phosphorylated protein mixtures. Based on the higher affinity of multi‐phosphorylated peptides for HAP surfaces, the introduction of a phosphate buffer gradient for stepwise peptide elution resulted in the separation of mono‐, di‐, tri‐, and multi‐phosphorylated peptides. Thus, we demonstrated that this technique is highly selective and independent of the degree of peptide phosphorylation.  相似文献   
7.
Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.  相似文献   
8.
王健  吴松  陈腾飞  朱东波  王靖  周天宝 《生物磁学》2011,(14):2615-2619
目的:通过建立兔股骨缺损的动物实验模型,对采用等温化学气相沉积法和等离子喷涂技术所制备的石墨化炭/炭复合材料+羟基磷灰石涂层(C/C+HA)复合骨植入材料进行骨植入实验的的生物相容性进行评价,探索该复合材料作为植入机体骨组织的可行性依据。方法:采用骨科钻在实验动物股骨髁上钻孔的方法建立骨缺损的动物实验模型,将待研究比较的实验材料分别植入实验动物的股骨髁内,持续观察8周,在术后第2、4、8周时应用X线照片、组织学染色和扫描电镜技术,分别观察所研究材料在机体内对骨缺损愈合及其对机体的影响,进行组间比较和相关性分析。结果:石墨化炭/炭复合材料+羟基磷灰石涂层(C/C+HA)复合骨植入材料的骨植入实验生物相容性良好,材料与骨组织结合牢固,界面中成骨细胞生长明显,且炭颗粒脱落现象少,未见炎症细胞浸润。植入动物体内的材料在植入期未引起机体局部的炎症浸润反应且表面脱落的碳颗粒在机体组织中也未引起局部严重的炎症反应。在实验动物植入材料后的连续8周观察期中,组织学观察显示:表面涂有HA的炭/炭复合材料对骨组织形态改建上表现良好,其与骨组织接界处所形成的纤维结缔组织膜层厚度明显比未涂HA的材料要小,与骨组织结合更为紧密和牢固;碳颗粒出现脱落游离的现象明显减少。结论:在炭/炭复合材料表面涂以HA生物涂层对骨的形态改建和促进骨小梁生长等方面具有良好的作用,是一种具有发展潜力的骨修复材料。  相似文献   
9.
Titanocene dichloride [Ti(η5-C5H5)2Cl2] (1), has been grafted onto dehydrated hydroxyapatite (HAP), Al2O3 and two mesoporous silicas MSU-2 (Michigan State University Silica type 2) and HMS (Hexagonal Mesoporous Silica), to give the novel materials HAP/[Ti(η5-C5H5)2Cl2] (S1) (1.01 wt.% Ti), Al2O3/[Ti(η5-C5H5)2Cl2] (S2) (2.36 wt.% Ti), HMS/[Ti(η5-C5H5)2Cl2] (S3) (0.75 wt.% Ti) and MSU-2/[Ti(η5-C5H5)2Cl2] (S4) (0.74 wt.% Ti), which have been characterized by powder X-ray diffraction, X-ray fluorescence, nitrogen gas sorption, multinuclear magic angle spinning NMR spectroscopy, IR spectroscopy, thermogravimetry analysis, UV spectroscopy, scanning electronic microscopy and transmission electronic microscopy. The cytotoxicity of the titanocene-functionalized materials toward human cancer cell lines from five different histogenic origins: 8505 C (anaplastic thyroid cancer), A253 (head and neck cancer), A549 (lung carcinoma), A2780 (ovarian cancer) and DLD-1 (colon cancer) has been determined. M50 values (quantity of material needed to inhibit normal cell growth by 50%) and Ti-M50 values (quantity of anchored titanium needed to inhibit normal cell growth by 50%) indicate that the activity of S1-S4 against studied human cancer cells depended on the surface type as well as on the cell line. In addition, studies on the titanocene release and the interaction of the materials S1-S4 with DNA show that the cytotoxic activity may be due to particle action, because no release of titanium complexes has been observed in physiological conditions, while electrostatic interactions of titanocene-functionalized particles with DNA have been observed.  相似文献   
10.
Xu J  Khor KA  Sui J  Zhang J  Tan TL  Chen WN 《Proteomics》2008,8(20):4249-4258
Hydroxyapatite (HA) and its derived bioceramic materials have been widely used for skeletal implants and/or bone repair scaffolds. It has been reported that carbon nanotube (CNT) is able to enhance the brittle ceramic matrix without detrimental to the bioactivity. However, interaction between osteoblasts and these bioceramics, as well as the underlying mechanism of osteoblast proliferation on these bioceramic surfaces remain to be determined. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report the first comparative proteomics profiling of human osteoblast cells cultured on plane HA and CNT reinforced HA, respectively. Cytoskeletal proteins, metabolic enzymes, signaling, and cell growth proteins previous associated with cell adhesion and proliferation were found to be differentially expressed on these two surfaces. The level of these proteins was generally higher in cells adhered to HA surface, indicating a higher level of cellular proliferation in these cells. The significance of these findings was further assessed by Western blot analysis. The differential protein profile in HA and CNT strengthened HA established in our study should be valuable for future design of biocompatible ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号