首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   14篇
  国内免费   16篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   8篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   16篇
  2010年   7篇
  2009年   17篇
  2008年   18篇
  2007年   15篇
  2006年   5篇
  2005年   11篇
  2004年   16篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   10篇
  1999年   5篇
  1998年   15篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   1篇
  1993年   10篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   4篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
1.
A simple mathematical model for competitive running is developed. This model contains the force and energy reserves as key variables and it describes their relationship and dynamics. It is made up of three submodels for the biomechanics of running, the energetics and the optimization. The model for the energetics is an extension of the hydraulic model of Margaria and Morton. The key geometric parameters of this piecewise linear, three compartment model are determined on the basis of well known physiological facts and data.  相似文献   
2.
In this paper, we are presenting a biological process to recover phosphorus by solubilizing low-grade phosphate rocks. To this end, the efficiency of different phosphate-solubilizing microorganism (PSM) species for solubilizing P from phosphate rocks using both pure cultures and associations. Nutritional conditions, phosphate rock concentrations, and reactor designs were tested. The genus Bacillus, especially Bacillus megaterium (ATCC 14581), was found to be the most promising PSM for solubilizing P. Production of organic acids and acidic pH values were shown to be directly related to P solubilizing. However, associations between tested microorganisms did not significantly enhance process efficiency. We conclude that nutritional factors of the medium are important to solubilization, and lower phosphate rock concentrations lead to better solubilization. The Air Lift reactor was promising for B. megaterium (ATCC 14581), but adaptations are needed for further tests.  相似文献   
3.
Anaerobic fermentation for hydrogen (H2) production was studied in a two-stage fermentation system fed with different ripened fruit feedstocks (apple, pear, and grape). Among the feedstocks, ripened apple was the most efficient substrate for cumulative H2 production (4463.7 mL-H2 L−1-culture) with a maximum H2 yield (2.2 mol H2 mol−1 glucose) in the first stage at a hydraulic retention time (HRT) of 18 h. The additional cumulative biohydrogen (3337.4 mL-H2 L−1-culture) was produced in the second stage with the reused residual substrate from the first stage. The major byproducts in this study were butyrate, acetate, and ethanol, and butyrate was dominant among them in all test runs. During the two-stage system, the energy efficiency (H2 conversion) obtained from mixed ripened fruits (RF) increased from 4.6% (in the first stage) to 15.5% (in the second stage), which indicated the energy efficiency can be improved by combined hydrogen production process. The RF could be used as substrates for biohydrogen fermentation in a two-stage (dark/dark) fermentation system.  相似文献   
4.
The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.  相似文献   
5.
Adaptations of species to capture limiting resources is central for understanding structure and function of ecosystems. We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (ΨLeaf), hydraulic conductivity, wood density (ρw), rooting depth, and specific leaf area (SLA) were measured during two summers. Water potentials in the upper soil layers during a summer drought ranged from −2.3 to −3.6 MPa, increasing to −0.05 MPa below 150 cm. Predawn ΨLeaf was used as a surrogate of weighted mean soil water potential because no statistical differences in ΨLeaf were observed between exposed and covered leaves. Species-specific differences in predawn ΨLeaf were consistent with rooting depths. Predawn ΨLeaf ranged from −4.0 MPa for shallow rooted shrubs to −1.0 MPa for deep-rooted shrubs, suggesting that the roots of the latter have access to abundant moisture, whereas shallow-rooted shrubs are adapted to use water deposited mainly by small rainfall events. Wood density was a good predictor of hydraulic conductivity and SLA. Overall, we found that shallow rooted species had efficient water transport in terms of high specific and leaf specific hydraulic conductivity, low ρw, high SLA and a low minimum ΨLeaf that exhibited strong seasonal changes, whereas deeply rooted shrubs maintained similar minimum ΨLeaf throughout the year, had stems with high ρw and low hydraulic conductivity and leaves with low SLA. These two hydraulic syndromes were the extremes of a continuum with several species occupying different portions of a gradient in hydraulic characteristics. It appears that the marginal cost of having an extensive root system (e.g., high ρw and root hydraulic resistance) contributes to low growth rates of the deeply rooted species.  相似文献   
6.
负压状态下压力变化导致鲫鱼身体组织的损伤   总被引:1,自引:0,他引:1  
通过试验研究负压状态下压力变化过程对鲫(Carassius auratus auratus)的损伤,试验采用真空泵和空气压缩机在试验容器内形成不同的压力变化过程,统计不同体长的鲫经历压力变化过程后的损伤情况,并对部分受损伤的鲫进行解剖和组织观察。研究发现负压状态下压力时变导数较大的变化过程会对鲫的生存构成直接威胁,主要损伤是鱼鳔部分或全部受损,在肝胰脏、肾脏等处有明显出血点。综合分析不同试验条件对鲫损伤的情况,得到了对鲫尽可能安全的压力时变导数极限值,从而为新型环保水力设施的设计提供参考依据,起到保护渔业资源的作用。  相似文献   
7.
Hydraulic residence time computation for constructed wetland design   总被引:1,自引:0,他引:1  
Hydraulic residence time (HRT) is one of the key design parameters controlling the removal efficiency of contaminants and nutrients in stormwater and wastewater wetlands. The paper presents a new approach to the estimation of HRT using the variable residence time (VART) model. The VART model is employed to simulate the major processes (including advection, dispersion, and transient storage of contaminants/nutrients in vegetated zones) affecting HRT and thereby to produce a hydraulic residence time distribution (HRTD) for a design wetland. The HRTD in combination with a moment-based method is then utilized to find a mean design HRT for the design wetland. Methods for estimation of parameters governing the HRTD are proposed. The new approach to HRT computation is demonstrated through a case study for the Tres Rios Demonstration (TRD) Wetlands in Arizona, USA. Modeling results show that the design HRTs for the Hayfield wetland (H1) and the Cobble wetlands (C1 and C2) are 4.04, 4.66, and 2.65 days, respectively. The computed HRTs agree well with those reported by previous studies, confirming the efficacy of the new approach to hydraulic design of constructed wetlands.  相似文献   
8.
Horizontal flow constructed wetlands are engineered systems capable of eliminating a wide range of pollutants from the aquatic environment. Nevertheless, poor hydrodynamic behavior is commonly found resulting in preferential pathways and variations in both (i) the hydraulic residence time distribution (HRTD) and, consequently, (ii) the wetland's treatment efficiency. The aim of this work was to outline a methodology for wetland design that accounts for the effect of heterogeneous hydraulic properties of the porous substrate on the HRTD and treatment efficiency. Biodegradation of benzene was used to illustrate the influence of hydraulic conductivity heterogeneity on wetland efficiency. Random, spatially correlated hydraulic conductivity fields following a log-normal distribution were generated and then introduced in a subsurface flow numerical model. The results showed that the variance of the distribution and the correlation length in the longitudinal direction are key indicators of the extent of heterogeneity. A reduction of the mean hydraulic residence time was observed as the extent of heterogeneity increased, while the HRTD became broader with increased skewness. At the same time, substrate heterogeneity induced preferential flow paths within the wetland bed resulting in variations of the benzene treatment efficiency. Further to this it was observed that the distribution of biomass within the porous bed became heterogeneous, rising questions on the representativeness of sampling. It was concluded that traditional methods for wetland design based on assumptions such as a homogeneous porous medium and plug flow are not reliable. The alternative design methodology presented here is based on the incorporation of heterogeneity directly during the design phase. The same methodology can also be used to optimize existing systems, where the HRTD has been characterized with tracer experiments.  相似文献   
9.
Limitations to vegetation establishment and abundance in biofiltration swales (also called biofilters or bioswales), vegetated storm-water facilities intended to improve runoff water quality, was studied through field monitoring and greenhouse experimentation. The various environmental factors influencing vegetation and organic litter abundance was investigated in eight bioswales in western Washington state, including three that were retrofitted. A nested 4×4 factorial greenhouse experiment tested the response of four turfgrass species commonly seeded in bioswales to three inundation regimes plus a control. In the greenhouse experiment and in the field, persistent inundation significantly suppressed germination and growth. Field monitoring further revealed that heavy shade overwhelms all other environmental factors. Where light is adequate, vegetation and organic litter biomass is strongly and inversely related to the proportion of time bioswales are inundated above 2.5-cm depth during the driest time of year (summer). For most bioswales, flow velocity and hydraulic loading during storm events appear too large to permit sedimentation of silt and clay particles, even with dense vegetation and abundant organic litter. Thus, herbaceous vegetation abundance may not provide a good indication of bioswale treatment performance, and actual storm-water treatment may be much poorer than is generally anticipated from previous studies.  相似文献   
10.
 Shoot hydraulic conductance was measured in beech (Fagus sylvatica L.) that had previously been exposed to high levels of nitrogen input. Whole-shoot hydraulic conductance, conductance per unit pressure gradient and leaf specific conductance were negatively correlated with the number of bud scars per unit length, a morphological parameter of tree decline. We propose a negative feedback mechanism by which stress induced alterations in shoot morphology can cause a lasting reduction of tree vigour. Received: 2 July 1997 / Accepted: 25 June 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号