首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   30篇
  国内免费   28篇
  2023年   10篇
  2022年   2篇
  2021年   16篇
  2020年   12篇
  2019年   12篇
  2018年   7篇
  2017年   13篇
  2016年   9篇
  2015年   19篇
  2014年   18篇
  2013年   28篇
  2012年   13篇
  2011年   18篇
  2010年   16篇
  2009年   34篇
  2008年   39篇
  2007年   18篇
  2006年   35篇
  2005年   31篇
  2004年   22篇
  2003年   31篇
  2002年   18篇
  2001年   19篇
  2000年   27篇
  1999年   20篇
  1998年   26篇
  1997年   26篇
  1996年   16篇
  1995年   10篇
  1994年   20篇
  1993年   12篇
  1992年   7篇
  1991年   15篇
  1990年   13篇
  1989年   13篇
  1988年   10篇
  1987年   15篇
  1986年   14篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
排序方式: 共有726条查询结果,搜索用时 78 毫秒
1.
2.
3.
Seasonal fluctuations in field populations of Meloidogyne incognita, Pratylenchus zeae, P. brachyurus, Criconemoides ornatus, Trichodorus christiei, and Helicotylenchus dihystera on monocultured corn, cotton, peanut, and soybean were determined monthly for 4 yr. Population densities of M. incognita were greater in corn and cotton plots than in peanut and soybean plots from July until January. Those of Pratylenchus spp. were greater on corn and soybean than on cotton and peanut during all months except May and June. C. ornatus populations were greater on corn and peanut than on cotton and soybean during all months. C. ornatus on corn and peanut was more numerous in July than in other months. There was no significant increase in populations of T. christiei, except on corn in June. H. dihystera was greater in cotton and soybean plots than in corn and peanut plots from August through December.  相似文献   
4.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   
5.
The role of endogenous GA3 and its application to seed development in two cotton genotypes Hybrid-6 (H-6) (big seeds) and Gujarat cotton 13 (G. Cot) (small seeds) was studied. Kernel and seed coat were subjected to growth analysis in terms of dry weight, water amount, and rates of dry matter accumulation and water uptake. H-6 kernel had manifold higher dry weight and water amount than G. Cot. Seed coat of both genotypes had similar dry weight at maturity, but the maximum rates of dry matter accumulation and water uptake were distinctly higher in H-6. According to growth analysis, development of seed kernel and coat was subdivided into four phases, i.e., cell division, cell elongation, dry matter accumulation and maturation. Endogenous GA3 level was estimated in kernel and seed coat by indirect ELISA using antibodies raised against GA3. GA3 amount per seed components was higher in the seed kernel of H-6 than of G. Cot, except 33 and 36 days after anthesis in kernel. H-6 seed coat had the higher amount of GA3 during cell division phase than that of G. Cot. Close correlation between in vivo GA3 level and water amount was recorded in both seed components. With GA3 or GA3 + NAA treatments in ovule culture, higher promotion in dry weight, water amount and seed size was noted in G. Cot than in H-6 suggesting that G. Cot is more deficient in endogenous GA3. The greatest stimulation of parameters studied was obtained in ovule culture with GA3 + NAA. When GA3 or GA3 + NAA was applied, initial significant difference in water amount and seed size was nullified. Data presented in this study indicated that GA3 regulates cell expansion through the water uptake by cotton seed.  相似文献   
6.
The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated...  相似文献   
7.
Growth and yield of cotton were best with combinations of fumigants and organophosphate and carbamate nematicides. Organophosphates or carbamates used alone did not give season-long control of root-knot nematodes. Long-term control was poor because the temporary sublethal effects of these materials diminished soon enough lhat the nematodes could reproduce. The nematodes survived the treatments and a year of nonhost culture, and damaged a susceptible host crop 2 years after treatment. No such damage occurred in plots treated with fumigant, fumigant plus organophosphate, or fumigant plus carbamate. Treatment of seed and treatment of cotton, either in furrow at planting or sidedressing at midseason, with organophosphate and carbamate nematicides resulted in little or no yield increase, because nematode control was only minimal and temporary; or in a yield decrease, because the toxicity of the materials was manifested when nematode populations were low.  相似文献   
8.
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.  相似文献   
9.
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll‐setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up‐regulated the expression of drought‐related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought‐resistant transgenic plants.  相似文献   
10.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号