首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   7篇
  国内免费   9篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   8篇
  2013年   7篇
  2012年   2篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   13篇
  1996年   7篇
  1995年   12篇
  1994年   11篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   10篇
  1989年   19篇
  1988年   7篇
  1987年   13篇
  1986年   5篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有309条查询结果,搜索用时 109 毫秒
1.
When hemolymph is taken from Ascaris lumbricoides at the time the worm is collected from pigs, it contains acetic, propionic, 2-methylbutyric, n-valeric, 2-methylvaleric, and succinic acid radicals; tiglic acid is absent.  相似文献   
2.
An enrichment culture which converted acetate to methane at 60°C was obtained from a thermophilic anaerobic bioreactor. The predominant morphotype in the enrichment was a sheathed gas-vacuolated rod with marked resemblence to the mesophile Methanothrix soehngenii. This organism was isolated using vancomycin treatments and serial dilutions and was named Methanothrix sp. strain CALS-1. Strain CALS-1 grew as filaments typically 2–5 cells long, and cultures showed opalescent turbidity rather than macroscopic clumps. The cells were enclosed in a striated subunit-type sheath and there were distinct cross-walls between the cells, similar to M. soehngenii. The gas vesicles in cells were typically 70 nm in diameter and up to 0.5 m long, and were collapsed by pressures over 3 atm (ca. 300 kPa). Stationary-phase cells tended to have a higher vesicle content than did growing cells, and occasionally bands of cells were seen floating at the top of the liquid in stationary-phase cultures. Acetate was the only substrate of those tested which was used for methanogenesis by strain CALS-1, and acetate was decarboxylated by the aceticlastic reaction. The optimum temperature for growth of strain CALS-1 was near 60°C (doubling time=24–26 h), with no growth occurring at 70°C and 37°C. The optimum pH value for growth was near 6.5 in bicarbonate/CO2 buffered medium and no growth occurred at pH 5.5 or pH 8.4. No growth was obtained below pH 7 when the medium was buffered with 20 mM phosphate. Strain CALS-1 grew in a chemically defined medium and required biotin. Sulfide concentrations over 1 mM were inhibitory to the culture, and growth was more rapid with 1 mM 2-mercaptoethane sulfonate (coenzyme M) or 1 mM titanium citrate as an accessory reductant than with 1 mM cysteine. It is likely that strain CALS-1 represents a new species in the genus Methanothrix.  相似文献   
3.
Sulfate-reducing bacteria with oval to rod-shaped cells (strains AcRS1, AcRS2) and vibrio-shaped cells (strains AcRM3, AcRM4, AcRM5) differing by size were isolated from anaerobic marine sediment with acetate as the only electron donor. A vibrio-shaped type (strain AcKo) was also isolated from freshwater sediment. Two strains (AcRS1, AcRM3) used ethanol and pyruvate in addition to acetate, and one strain (AcRS1) grew autotrophically with H2, sulfate and CO2. Higher fatty acids or lactate were never utilized. All isolates were able to grow in ammonia-free medium in the presence of N2. Nitrogenase activity under such conditions was demonstrated by the acetylene reduction test. The facultatively lithoautotrophic strain (AcRS1), a strain (AcRS2) with unusually large cells (2×5 m), and a vibrio-shaped strain (AcRM3) are described as new Desulfobacter species, D. hydrogenophilus, D. latus, and D. curvatus, respectively.  相似文献   
4.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   
5.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   
6.
Polysaccharides excreted by cowpea Rhizobium strains JLn(c) and RA-1 were mixtures of complex acidic exopolysaccharides and low molecular weight neutral glucans. These polymers were fractionated using gel filtration chromatography. Purified fractions of the acidic heteropolymer reacted with peanut agglutinin to give precipitin bands when subjected to Ouchterlony gel diffusion. The acidic exopolysaccharide was found to contain mainly glucose, galactose, glucuronic acid, mannose and fucose. The non-carbohydrate substituents of the acidic heteropolymer were pyruvate, acetate and uronate which were identified by infrared and proton nuclear magnetic resonance spectroscopy as well as by chemical analysis.Abbreviations EPS Extracellular polysaccharide - YEM yeast extract mannitol - PNA peanut agglutination - 1H-NMR proton nuclear magnetic resonance  相似文献   
7.
Intrinsic growth and substrate uptake parameters were obtained for Peptostreptococcus productus, strain U-1, using carbon monoxide as the limiting substrate. A modified Monod model with substrate inhibition was used for modeling. In addition, a product yield of 0.25 mol acetate/mol CO and a cell yield of 0.034 g cells/g CO were obtained. While CO was found to be the primary substrate, P. productus is able to produce acetate from CO2 and H2, although this substrate could not sustain growth. Yeast extract was found to also be a growth substrate. A yield of 0.017 g cell/g yeast extract and a product yield of 0.14 g acetate/g yeast extract were obtained. In the presence of acetate, the maximum specific CO uptake rate was increased by 40% compared to the maximum without acetate present. Cell replication was inhibited at acetate concentrations of 30 g/l. Methionine was found to be an essential nutrient for growth and CO uptake by P. productus. A minimum amount of a complex medium such as yeast extract (0.01%) is, however, required.  相似文献   
8.
Abstract Simultaneous measurements of sulfate reduction and acetate oxidation using 35S and 14C tracers showed that acetate was the main energy substrate for the sulfate-reducing bacteria in Lake Eliza sediments. Sulfate reduction rates calculated from acid-volatile sulfide data only, correlated with acetate oxidation at around 0.5:1. However, the rates calculated from acid-volatile plus pyrite sulfur data correlated with acetate oxidation at a ratio of around 1:1. Molybdate completely inhibited sulfate reduction but acetate oxidation was not totally inhibited. From 10 to 15% of acetate oxidation was not attributable to the sulfate-reducing bacteria. There was rapid accumulation of acetate, within the first 12 h of incubation. Acetate, propionate and butyrate accumulated in the presence of molybdate.  相似文献   
9.
The influence of growth rate, the presence of acetate and variation in the dissolved oxygen concentration on the kinetics of nitrite oxidation was studied in suspensions of intact cells of Nitrobacter winogradskyi and Nitrobacter hamburgensis. The cells were grown in nitrite-limited chemostats at different dilution rates under chemolithotrophic and mixotrophic conditions. Growth of N. hamburgensis in continuous culture was dependent on the presence of acetate. Acetate hardly affected the maximal nitrite oxidation rate per cell (V max), but displayed a distinctly negative effect on the saturation constants for nitrite oxidation (K m ) of both Nitrobacter species. This effect was reversible; when acetate was removed from the suspensions the K m -values for nitrite oxidation returned to their original values. A reduction of the dissolved oxygen concentration from 100% to 18% air saturation slightly decreased the V max of chemolithotrophically grown N. winogradskyi cells, whereas a 2.3 fold increase was observed with mixotrophically grown cells of N. hamburgensis. It is suggested that the large variation in K m encountered in field samples could be due to this observed phenotypic variability. The V max per cell is not a constant, but apparently is dependent on growth rate and environmental conditions. This implies that potential nitrite oxidation activity and numbers of cells are not necessarily related. Considering their kinetic characteristics, it is unlikely that N. hamburgensis is able to compete succesfully with N. winogradskyi for limiting amounts of nitrite under mixotrophic conditions. However, at reduced partial oxygen tensions, N. hamburgensis may become the better competitor.  相似文献   
10.
The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74±0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27±0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions leading to changes in the Y glucose and Y ATP values. In general, glucose-sufficient cultures expressed lower yield values than a correponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40g glucose·l-1 also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased.Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of mannitol to a glucose-limited culture. In both cases, however, there was no apparent change in the Y ATP value.These results are discussed with respect to two imponder-ables, namely the mechanism(s) by which C. butyricum might partially or totally dissociate catabolism from anabolism, and how it might dispose of the excess reductant [as NAD(P)H] that attends both the formation of acetate from glucose and the fermentation of mannitol. With regards to the latter, evidence is presented that supports the conclusion that the ferredoxin-mediated oxidation of NAD(P)H, generating H2, is neither coupled to, nor driven by, an energy-yielding reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号