首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   10篇
  国内免费   12篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   14篇
  2014年   70篇
  2013年   80篇
  2012年   68篇
  2011年   86篇
  2010年   46篇
  2009年   52篇
  2008年   64篇
  2007年   64篇
  2006年   57篇
  2005年   39篇
  2004年   39篇
  2003年   33篇
  2002年   29篇
  2001年   18篇
  2000年   60篇
  1999年   54篇
  1998年   75篇
  1997年   73篇
  1996年   75篇
  1995年   83篇
  1994年   65篇
  1993年   58篇
  1992年   56篇
  1991年   53篇
  1990年   42篇
  1989年   51篇
  1988年   36篇
  1987年   29篇
  1986年   28篇
  1985年   29篇
  1984年   35篇
  1983年   19篇
  1982年   21篇
  1981年   23篇
  1980年   21篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1801条查询结果,搜索用时 31 毫秒
1.
Abstract: In this study we examined the effect on oligodendroglial survival of exogenous cystine deprivation. Oligodendroglia isolated from mixed glial primary cultures derived from brains of 1-day-old rats, and then grown for 3 days, were markedly dependent on extracellular cystine for survival. The EC50 values for cystine for a 24-h exposure ranged from 2 to 65 µ M . After 6 h of cystine deprivation, the cellular glutathione level decreased to 21 ± 13% of the control. Free radical scavengers (α-tocopherol, ascorbate, idebenone, and N-tert -butyl-α-phenylnitrone) were protective against cystine deprivation but had no effect on the glutathione level. An iron chelator, desferrioxamine mesylate, also was protective. These findings suggest that intracellular hydroxyl radicals are important for this toxicity. In contrast to the observations in 3-day-old cultures, the dependence on exogenous cystine for cell viability was not observed consistently in oligodendroglia cultured for 6 days before the onset of cystine deprivation. Several observations suggested that this loss of cystine dependence was due to a diffusible factor. Sensitivity to the toxicity of cystine deprivation in day 6 cultures increased as the volume of medium was increased from 0.3 to 2 ml. Furthermore, preincubation of cystine-depleted medium with astrocyte cultures eliminated the toxicity of the cystine deprivation. HPLC assay of the conditioned cystine-depleted medium showed no significant change in cystine or cysteine concentration. We conclude that oligodendroglia are highly susceptible to cystine deprivation in day 3 cultures and that this susceptibility is due to the accumulation of intracellular free radicals in the setting of glutathione depletion. The resistance of day 6 oligodendroglial cultures is caused at least in part by a diffusible factor.  相似文献   
2.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   
3.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
4.
5.
Solubilisation of a Glutamate Binding Protein from Rat Brain   总被引:2,自引:2,他引:0  
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   
6.
Summary Four zones of enzymatic activity for glutamate oxaloacetate transaminase (GOT) were found in apple tissue. A dimeric gene, GOT-1, determining the fastest migrating zone, was identified. Six alleles were found, including a near null allelle which produced detectable heterodimeric bands but not homodimeric bands. A marked deficit or absence of certain geno-types in all backcrosses and in some crosses between unrelated varieties was attributed to the close linkage (r=0.02±0.005) of GOT-1 with the incompatibility S locus. GOT-1 was also closely linked with the isocitrate dehydrogenase locus IDH-1 (0.03±0.01). Proposed incompatibility genotypes for four cultivars, and the linked GOT-1 alleles are Cox: S 1 b/S 2 d, Idared: S 3 a/S 4 c, Fiesta: S 3 a/S 2 d and Kent: S 3 a/S 1 b.The results reported in this paper are part of a PhD Thesis by the first author  相似文献   
7.
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.  相似文献   
8.
An enzyme-linked fluorometric assay is described for the continuous monitoring of the unidirectional efflux of glutamate from guinea-pig synaptosomes. Glutamate efflux from freshly suspended, polarized synaptosomes occurs at 0.35-0.39 nmol min-1 mg of protein-1 and is not significantly affected by external Ca2+. KCl depolarization (30 mMKCl) in the absence of Ca2+ doubles this rate, whereas in the presence of Ca2+, the initial kinetics of the assay are consistent with the release in the first 5 s of 0.6 nmol mg of protein-1. The final extent of Ca2+-dependent release amounts to 1.9 nmol mg of protein-1, or 8.5% of the total intrasynaptosomal glutamate content. Preincubation of synaptosomes at 30 degrees C for 2 h before depolarization leads to a decrease in Ca2+-independent release and an increase in Ca2+-dependent release, consistent with an intrasynaptosomal relocation of the amino acid.  相似文献   
9.
The two isoenzymes of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14), previously identified in root nodules of Phaseolus vulgaris L., have both been shown to be located in root-nodule plastids. The nodule specific NADH-GOGAT II accounts for the majority of the activity in root nodules, and is present almost exclusively in the central tissue of the nodule. However about 20% of NADH-GOGAT I activity is present in the nodule cortex, at about the same specific activity as this isoenzyme is found in the central tissue. Glutamine synthetase (GS; EC 6.3.1.2) occurs predominantly as the polypeptide in the central tissue, whereas in the cortex, the enzyme is represented mainly by the polypeptide. Over 90% of both GS and NADH-GOGAT activities are located in the central tissue of the nodule and GS activity exceeds NADH-GOGAT activity by about twofold in this region. Using the above information, a model for the subcellular location and stoichiometry of nitrogen metabolism in the central tissue of P. vulgaris root nodules is presented.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GOGAT glutamate synthase - GS glutamine synthetase - NADH-GOGAT NADH-dependent glutamate synthase - IEX-HPLC ion-exchange high-performance liquid chromatography  相似文献   
10.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号