首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12807篇
  免费   595篇
  国内免费   725篇
  2024年   9篇
  2023年   63篇
  2022年   113篇
  2021年   188篇
  2020年   201篇
  2019年   266篇
  2018年   244篇
  2017年   223篇
  2016年   307篇
  2015年   412篇
  2014年   703篇
  2013年   885篇
  2012年   635篇
  2011年   517篇
  2010年   494篇
  2009年   750篇
  2008年   761篇
  2007年   806篇
  2006年   636篇
  2005年   581篇
  2004年   503篇
  2003年   455篇
  2002年   348篇
  2001年   325篇
  2000年   314篇
  1999年   364篇
  1998年   288篇
  1997年   233篇
  1996年   224篇
  1995年   269篇
  1994年   228篇
  1993年   212篇
  1992年   190篇
  1991年   154篇
  1990年   126篇
  1989年   121篇
  1988年   105篇
  1987年   128篇
  1986年   102篇
  1985年   104篇
  1984年   98篇
  1983年   64篇
  1982年   58篇
  1981年   74篇
  1980年   55篇
  1979年   44篇
  1978年   63篇
  1977年   27篇
  1976年   23篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.  相似文献   
2.
1. Trichome‐producing (hairy) and trichomeless (glabrous) plants of Arabidopsis halleri subsp. gemmifera were investigated to test whether plant resistance to herbivory depends on the plants' phenotypes and/or the phenotypes of neighbouring plants (associational effects). 2. A common garden experiment was conducted in which the relative frequency of hairy and glabrous plants was manipulated. Two species of leaf‐chewing insects (larvae of a white butterfly and a cabbage sawfly) were found less often on hairy plants than on glabrous plants. By contrast, the numbers of aphids and flea beetles did not differ significantly between hairy and glabrous plants. For none of these insects did abundance depend on the frequency of the two plant morphs. 3. A field survey was conducted in two natural populations of A. halleri. In the first population, a species of white butterfly was the dominant herbivore, and hairy plants incurred less leaf damage than glabrous plants across 2 years. By contrast, in the other population, where flea beetles were dominant, there were no consistent differences in leaf damage between the two types of plants. In neither of the two populations was any evidence found of associational effects. 4. This study did not provide any conclusive evidence of associational effects of anti‐herbivore resistance, but it was discovered that trichomes can confer resistance to certain herbivores. Given the results of previous work by the authors on associational effects against a flightless leaf beetle, such associational effects of the trichome dimorphism of A. halleri were herbivore‐specific.  相似文献   
3.
A new genetic polymorphism of an unidentified plasma protein (PLP1) in pigs was described by using a method of two-dimensional gel electrophoresis and protein staining. Two codominant alleles, with frequencies of 0.83 and 0.17, were found in the Swedish Yorkshire breed. The PLP1 marker was typed in a three-generation pedigree and tested for linkage against a set of 128 markers. The PLP1 locus showed significant LOD score values with three different microsatellite markers (S0092, DAGK and S005), previously assigned to chromosome 5.  相似文献   
4.
The relationship between neutral and adaptive genetic diversity is important to understand in assessing the implications of a population bottleneck. Fitness-related genes, such as those of the major histocompatibility complex (MHC), may be influenced by selection, and so retain diversity even when it is lost at neutral markers. We measured MHC class I variation in an archaic reptile species Sphenodon guntheri [North Brother Island (NBI) tuatara], which naturally occurs on one 4 ha island in Cook Strait, New Zealand, and has low levels of microsatellite diversity. MHC variation in S. guntheri was compared with microsatellite DNA variation, and with MHC variation in a large population of Sphenodon punctatus (Cook Strait tuatara) on Stephens Island. The NBI population shows significantly decreased levels of genetic diversity compared with the Stephens Island population. Only three different MHC sequences and three genotypes were found on NBI, compared with 15 sequences and 21 genotypes in a similar sample size from Stephens Island. Two sequences appear to be unique to the NBI population. The assortment of sequence variants into genotypes suggests strong gametic disequilibrium between two MHC class I loci in S. guntheri , and only two haplotypes that were present in Hardy–Weinberg proportions were identified. MHC diversity in NBI tuatara appears to be largely influenced by genetic drift, consistent with a recent population bottleneck. This may compromise the ability of this population to respond to novel disease threats.  相似文献   
5.
6.
Utilizing intersimple sequence repeat (ISSR) markers, 18 mulberry (Morus spp.) germplasm collections were studied for genetic variability, phylogenetic relationship, and association with protein and sugar content. The genetic polymorphism exhibited by ISSR primers was 100%, and the genetic diversity recorded among the mulberry accessions had an average of 0.263 ± 0.094. Dendrogram (unweighted pair group method analysis) clustered the mulberry accessions into two major groups, one comprised the accessions collected from north or northeast regions of India, and the other comprised three subclusters and one isolate, i.e., Assamjati, a collection from Assam. Another subcluster contained accessions collected from Kerala, which belong to Morus indica. These accessions of M. indica from Kerala were found to be genetically diverse from north and northeast India. Multidimensional scaling of the ISSR data clearly separated the mulberry accessions according to their genetic diversity and protein content. Mulberry accessions were arbitrarily grouped into three classes viz. very low, moderate, and high in terms of protein and sugar content using standard statistical programs. Stepwise multiple regression analysis identified four ISSR markers (8351,600, 8355,600, 8222,500, and 8072,500) associated with protein content with highly positive correlation (p < 0.001) with linear curves with high F values (18.055 to 48.674; p < 0.001). In case of sugar content, four ISSR markers viz. 812900, 8171,500, 8261,500, and 8108,000 showed negative correlation. Hence, DNA markers for proteins seem promising and may be used in marker-assisted breeding program.  相似文献   
7.
Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome‐wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near‐absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short‐term intolerance for any change to repeat length and a long‐term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome—a 10 x CA repeat in fibroblast growth factor receptor‐like 1 (FGFRL1)—that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants.  相似文献   
8.
9.
MicroRNAs (miRNAs) encoded by the myosin heavy chain (MHC) genes are muscle‐specific miRNAs (myomiRs) and regulate the expression of MHC isoforms in skeletal muscle. These miRNAs have been implicated in muscle fibre types and their characteristics by affecting the heterogeneity of myosin. In pigs, miR‐208b and miR‐499 are embedded in introns of MYH7 and MYH7b respectively. Here, we identified a novel single nucleotide polymorphism (SNP) in intron 30 of MYH7 by which porcine miR‐208b is encoded. Based on the association study using a total of 487 pigs including Berkshire (= 164), Landrace (= 121) and Yorkshire (= 202), the miR‐208b SNP (g.17104G>A) had significant effects on the proportions of types I and IIb fibre numbers (< 0.010) among muscle fibre characteristics and on drip loss (= 0.012) in meat quality traits. Moreover, the SNP affected the processing of primary miR‐208b into precursor miR‐208b with a marginal trend towards significance (= 0.053), thereby leading to significant changes in the levels of mature miR‐208b (= 0.009). These SNP‐dependent changes in mature miR‐208b levels were negatively correlated with the expression levels of its target gene, SOX‐6 (= 0.038), and positively associated with the expression levels of its host gene, MYH7 (= 0.046). Taken together, our data suggest that the porcine miR‐208b SNP differentially represses the expression of SOX‐6 by regulating miRNA biogenesis, thereby affecting the expression of MYH7 and the traits of muscle fibre characteristics and meat quality.  相似文献   
10.
The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a Tetranychus urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea (BPU) compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号