首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  国内免费   2篇
  完全免费   71篇
  2019年   7篇
  2018年   42篇
  2017年   24篇
  2016年   16篇
  2015年   14篇
  2014年   47篇
  2013年   53篇
  2012年   26篇
  2011年   4篇
  2010年   3篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
1.
体重性状是肉鸡重要的经济性状。为了寻找可用于京海黄鸡体重性状遗传改良的分子标记及候选基因,本文以400只京海黄鸡核心群母鸡为基础,测定了0~14周龄体重,利用简化基因组测序技术(Specific-locus amplified fragment sequencing, SLAF-seq)对京海黄鸡体重性状进行全基因组关联研究(Genome-wide association stndy, GWAS),筛选与京海黄鸡体重性状相关的SNPs位点。结果共检测到100个与京海黄鸡体重相关的SNPs位点,其中15个位点效应达到全基因组显著水平(P<1.87E-06),85个位点效应达到全基因组潜在显著水平(P<3.73E-05)。通过筛选每个显著SNP周围1 Mb区域内的基因,共找到9个可能的候选基因,其中FAM124A(Family with sequence similarity 124A)、QDPR(Quinoid dihydropteridine reductase)、WDR1(WD repeat domain 1)和SLC2A9(Solute carrier family 2(facilitated glucose transporter), member 9)4个基因可能是影响体重性状的重要候选基因。同时还发现,4号染色体75.6~80.7 Mb区域集中了大部分与京海黄鸡中后期体重性状显著相关的SNPs位点,该区域可能是影响京海黄鸡中后期生长体重的重要候选区域。  相似文献
2.
Research on Parkinson’s disease (PD) has made remarkable progress in recent decades, due largely to new genomic technologies, such as high throughput sequencing and microarray analyses. Since the discovery of a linkage of a missense mutation of the α-synuclein (αS) gene to a rare familial dominant form of PD in 1996, positional cloning and characterization of a number of familial PD risk factors have established a hypothesis that aggregation of αS may play a major role in the pathogenesis of PD. Furthermore, dozens of sensitizing alleles related to the disease have been identified by genome wide association studies (GWAS) and meta-GWAS, contributing to a better understanding of the pathological mechanisms of sporadic PD. Thus, the knowledge obtained from the association studies will be valuable for “the personal genome” of PD. Besides summarizing such progress, this paper focuses on the role of microRNAs in the field of PD research, since microRNAs might be promising as a biomarker and as a therapeutic reagent for PD. We further refer to a recent view that neurodegenerative diseases, including PD, coexist with metabolic disorders and are stimulated by type II diabetes, the most common disease among elderly populations. The development of genomic approaches may potentially contribute to therapeutic intervention for PD.  相似文献
3.
Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.  相似文献
4.
Age-related macular degeneration (AMD) is a major late-onset posterior eye disease that causes central vision to deteriorate among elderly populations. The predominant lesion of AMD is the macula, at the interface between the outer retina and the inner choroid. Recent advances in genetics have revealed that inflammatory and angiogenic pathways play critical roles in the pathophysiology of AMD. Genome-wide association studies have identified ARMS2/HTRA1 and CFH as major AMD susceptibility genes. Genetic studies for AMD will contribute to the prevention of central vision loss, the development of new treatment, and the maintenance of quality of vision for productive aging.  相似文献
5.
Paget disease of bone (PDB) is a skeletal disorder common in Western Europe but extremely rare in the Indian subcontinent and Far East. The condition has a strong genetic element with mutations affecting the SQSTM1 gene, encoding the p62 protein, frequently identified. Recently SQSTM1 mutations have also been reported in a small number of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), neurodegenerative disorders in which significant coexistence with PDB has not been previously recognized. Although several SQSTM1 mutations are common to both ALS/FTLD and PDB, many are ALS/FTLD-specific. The p62 protein regulates various cellular processes including NF-κB signaling and autophagy pathways. Here we consider how knowledge of the impact of PDB-associated SQSTM1 mutations (several of which are now known to be relevant for ALS/FTLD) on these pathways, as well as the locations of the mutations within the p62 primary sequence, may provide new insights into ALS/FTLD disease mechanisms.  相似文献
6.
7.
8.
9.
10.
The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~ 50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号