首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69507篇
  免费   5293篇
  国内免费   3040篇
  2023年   1023篇
  2022年   1110篇
  2021年   2061篇
  2020年   2183篇
  2019年   2464篇
  2018年   2456篇
  2017年   1761篇
  2016年   1746篇
  2015年   2254篇
  2014年   4248篇
  2013年   5294篇
  2012年   3189篇
  2011年   4305篇
  2010年   3309篇
  2009年   3680篇
  2008年   3747篇
  2007年   3817篇
  2006年   3393篇
  2005年   3028篇
  2004年   2680篇
  2003年   2266篇
  2002年   2022篇
  2001年   1375篇
  2000年   1160篇
  1999年   1149篇
  1998年   1002篇
  1997年   847篇
  1996年   820篇
  1995年   837篇
  1994年   761篇
  1993年   705篇
  1992年   599篇
  1991年   570篇
  1990年   443篇
  1989年   409篇
  1988年   371篇
  1987年   353篇
  1986年   313篇
  1985年   433篇
  1984年   617篇
  1983年   471篇
  1982年   517篇
  1981年   360篇
  1980年   361篇
  1979年   301篇
  1978年   221篇
  1977年   172篇
  1976年   143篇
  1975年   131篇
  1974年   121篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
4.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
5.
6.
Abstract A small cryptic plasmid, pRJF2, from Butyrivibrio fibrisolvens strain OB157 was isolated and sequenced. The plasmid is similar in organisation to the previously sequenced Butyrivibrio plasmid, pRJF1, with two open reading frames, ORF1 and ORF2, flanking a region tentatively identified as the replication origin, and a region of unknown function defined by terminal 79 bp invert repeats. The sequences of ORF1, ORF2, and the presumptive replication origin are highly conserved. The sequence between the 79 bp invert repeats is not, and is therefore presumed to be of lesser functional significance, although the 5' and 3' termini are still highly conserved. The functional importance for plasmid replication of these regions was tested by constructing potential shuttle vectors, each lacking one or more of the regions of interest. When the region between the invert repeats was deleted and replaced by the erythromycin resistance gene from pAM β1 together with pUC18, to produce the 7.9 kb chimaeric plasmid pYK4, the construct was successfully transformed into E. coli and B. fibrisolvens by electroporation, and was stably maintained in both hosts. Both ORF1 and ORF2 were required for successful transformation of B. fibrisolvens .  相似文献   
7.
The actin cortex is a thin layer of actin, myosin and actin-binding proteins that underlies the membrane of most animal cells. It is highly dynamic and can undergo remodelling on timescales of tens of seconds, thanks to protein turnover and myosin-mediated contractions. The cortex enables cells to resist external mechanical stresses, controls cell shape and allows cells to exert forces on their neighbours. Thus, its mechanical properties are the key to its physiological function. Here, we give an overview of how cortex composition, structure and dynamics control cortex mechanics and cell shape. We use mitosis as an example to illustrate how global and local regulation of cortex mechanics gives rise to a complex series of cell shape changes.  相似文献   
8.
Endophytic fungi, especially from mangrove plants, are rich source of secondary metabolites, which plays a major role in various pharmacological actions preferably in cancer and bacterial infections. To perceive its role in antidiabetic activity we isolated and tested the metabolites derived from a novel strain Alternaria longipes strain VITN14G obtained from mangrove plant Avicennia officinalis. The crude extract was analyzed for antidiabetic activity and subjected to column chromatography. The isolated fractions were screened in vitro for α-glucosidase and α-amylase inhibitory activities. The cytotoxicity of the isolated fractions was studied on L929 cell lines. Following which, the screened fraction 2 was allowed for structure elucidation using gas chromatography-mass spectrometry, one-dimensional, two-dimensional nuclear magnetic resonance spectroscopy, ultraviolet, and Fourier-transform infrared analysis. The binding energies of the isolated fraction 2 with glycolytic enzymes were calculated by molecular docking studies using AutoDock Vina. The isolated fraction 2 identified as 2,4,6-triphenylaniline, showed no significant difference in α-amylase inhibition rates and a significant difference of 10% in α-glucosidase inhibition rates than that of the standard drug acarbose. Further, the cytotoxicity assay of the isolated fraction 2 resulted in a cell viability of 73.96%. Supportingly, in silico studies showed 2,4,6-triphenylaniline to produce a stronger binding affinity toward the glycolytic enzyme targets. The compound 2,4,6-triphenylaniline isolated from A. longipes strain VITN14G exhibited satisfactory antidiabetic activity for type 2 diabetes in vitro, which will further be confirmed by in vivo studies. Successful outcome of the study will result in a natural substitute for existing synthetic antidiabetic drugs.  相似文献   
9.
10.
A highly upregulated gene during tail regeneration in lizards is Wnt2b, a gene broadly expressed during development. The present study examines the distribution of Wnt proteins, most likely wnt2b, by western blotting and immunofluorescence in the blastema-cone of lizards using a specific antibody produced against a lizard Wnt2b protein. Immunopositive bands at 48–50 and 18 kDa are present in the regenerative blastema, the latter likely as a degradation product. Immunofluorescence is mainly observed in the wound epidermis, including in the Apical Epidermal Peg where the protein appears localized in intermediate and differentiating keratinocytes. Labeling is more intense along the perimeter of keratinocytes, possibly as a secretory product, and indicates that the high epidermal proliferation of the regenerating epidermis is sustained by Wnt proteins. The regenerating spinal cord forms an ependymal tube within the blastema and shows immunolabeling especially in the cytoplasm of ependymal cells contacting the central canal where some secretion might occur. Also, regenerating nerves and proximal spinal ganglia innervating the regenerating blastema contain this signaling protein. In contrast, the blastema mesenchyme, muscles and cartilage show weak immunolabeling that tends to disappear in tissues located in more proximal regions, close to the original tail. However, a distal to proximal gradient of Wnt proteins was not detected. The present study supports the hypothesis that Wnt proteins, in particular Wnt2b, are secreted by the apical epidermis covering the blastema and released into the mesenchyme where they stimulate cell multiplication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号