首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3025篇
  免费   382篇
  国内免费   698篇
  2024年   2篇
  2023年   71篇
  2022年   66篇
  2021年   78篇
  2020年   109篇
  2019年   146篇
  2018年   117篇
  2017年   168篇
  2016年   143篇
  2015年   120篇
  2014年   140篇
  2013年   170篇
  2012年   111篇
  2011年   130篇
  2010年   121篇
  2009年   186篇
  2008年   224篇
  2007年   215篇
  2006年   221篇
  2005年   186篇
  2004年   158篇
  2003年   134篇
  2002年   118篇
  2001年   112篇
  2000年   89篇
  1999年   75篇
  1998年   79篇
  1997年   69篇
  1996年   60篇
  1995年   58篇
  1994年   53篇
  1993年   56篇
  1992年   42篇
  1991年   38篇
  1990年   45篇
  1989年   22篇
  1988年   39篇
  1987年   20篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   6篇
  1982年   14篇
  1981年   15篇
  1980年   6篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
  1958年   2篇
排序方式: 共有4105条查询结果,搜索用时 46 毫秒
1.
Communities change with time. Studying long-term change in community structure permits deeper understanding of community dynamics, and allows us to forecast community responses to perturbations at local (e.g. fire, secondary succession) and global (e.g. desertification, global warming) spatial scales. Monitoring efforts exploring the temporal dynamics of indicator taxa are therefore a critical part of conservation agendas. Here, the temporal dynamics of the Otongachi leaf litter ant community, occurring in a cloud forest in coastal Ecuador, were explored. By sampling this community six times over eleven years, I assessed how the ant fauna caught by Winkler traps (more diverse and cryptic fauna) and caught by pitfall traps (larger, more mobile fauna) changed over time. The Otongachi leaf litter ant community was dynamic. Although species richness in the community remained constant, temporal turnover of species was high: on average, 51% of the ant species in Winkler traps, and 56% of those in pitfall traps, were replaced with other ant species from one year to the other. Shifts in the rank abundance of species in the community were also large across the eleven years and, on average, shifts in the rank abundance of species collected by Winkler traps doubled those occurring in pitfall traps from one census to the other. In spite of these trends, the Otongachi ant fauna showed no (Winkler) or weak (pitfall) evidence of directional change (towards a new community). Thus, this tropical ant community can be divided in two community compartments. The Winkler compartment composed by a more diverse and cryptic ant fauna appears to be resilient and stable in time. The pitfall compartment composed by larger and more mobile ants may be prone to respond to disturbance. This study suggests that 1) species appearing/disappearing from a site may be rather the rule, difficult to separate from responses to ecological stress. 2) Conclusions made in short-term studies, or studies comparing two (e.g. before and after) snapshots of a community, should thus be revisited. Finally, 3) the ant fauna caught by pitfall traps (a rather simple and cheap survey method) is the most likely community compartment to indicate ecological perturbation. This study adds to the growing evidence that using ants as ecological indicators should incorporate long-term temporal dynamics.  相似文献   
2.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest and shade house data combined) ranged from 5–5 days for Pometia tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However, the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species germinated in ≤30 days at constant 30°C in light.  相似文献   
3.
We report predation of four birds while caught in mist nets and recommend some means of prevention. Two birds were attacked by Callitrhix jacchus and one by Saguinus midas. The predator in the fourth case was unidentified. These cases were relatively rare, affecting 0.4–4.4% of the captured birds. Two of the predated birds were caught more than 1 m above the ground and may have been accessed from branches. The other two were caught close to the ground. Reducing time intervals between net checks and cutting off branches close to nets may reduce bird predation in mist nets.  相似文献   
4.
5.
Nitrogen (N) fixation in moss‐associated cyanobacteria is one of the main sources of available N for N‐limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low‐frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss‐associated N2 fixation. We therefore aimed to estimate moss‐associated N2 fixation throughout the snow‐free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high‐resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha?1) and birch litter addition plots (2.8 ± 0.2 kg N ha?1), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha?1). The control plots had intermediate rates (2.2 ± 0.2 kg N ha?1). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow‐free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss‐associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species’ litter traits.  相似文献   
6.
Vascular plant species richness is known to often decrease with both increasing latitude and increasing altitude. However, a number of studies have shown the reverse trend and the primary cause of these gradients remains unknown. In the present work, generalized linear models were used to assess the relative importance of latitude and altitude as well as of a number of other factors (mean annual precipita-tion, slope, substrate and forest type) on species richness in temperate rainforests of New Zealand. The effect of Southern beech ( Nothofagus spp.) as dominant canopy species on total species richness was shown to be much smaller than postulated in most previous studies. Within the region studied, altitude had by far the strongest effect on species richness. This effect was independent of latitude and was significant for woody but not for herbaceous vegetation.  相似文献   
7.
In North-western Germany woodland fragmentation has caused a decline in many forest plant species. Hedgerows partly offer a similar environment as forests and have been identified as potential habitats for forest plants in various studies from North America and Western Europe. The objective of this study was to examine whether this applies also to Central Europe and which variables affect the spatial distribution and abundance of forest plant species in hedgerows on a local scale. Three hedgerow networks north of the city of Bremen, Germany, were selected as study areas and divided into totally 515 hedgerow segments. In each segment we recorded all vascular plants and a large number of explanatory variables relating to structure, spatial configuration, environment and management. Averaged across species there was a predominant effect of environmental factors on the occurrence of forest species in the hedgerows, followed by spatial configuration and management. Hedgerow structure was found to be less important. In general, forest species were favored by low nutrient and light availability as well as high connectivity with other hedgerows or forest; they avoided hedgerows with a west-easterly orientation and an adjacent land use in the form of fields or grasslands. Forest species found and not found in hedgerows did not differ in their environmental preferences or life history traits. The number of threatened forest species in the hedgerows, however, was lower than expected with respect to their overall proportion to the total number of forest species in the region.  相似文献   
8.
An Environmental Assessment (EA) is one of the steps within the Environmental Impact Assessment process. Birds are often used in EA to help decision makers evaluate potential human impacts from proposed development activities. A “sensitivity to human disturbance” index, created by Parker III et al. (1996) for all Neotropical species, is commonly considered an ecological indicator. However, this parameter was created subjectively and, for most species, there have been no rigorous field test to validate its effectiveness as such. Therefore, in this study, we aim to: (1) evaluate if, at the local scale, birds from forest patches in a human-modified landscape (HML) may differ in sensitivity from Parker's sensitivity classification; (2) evaluate the effectiveness of the species richness value at each sensitivity level as an ecological indicator; (3) gather information on how often and in which manner Parker's classification has been used in EA. To do so, bird sampling was performed in eight forest patches in a HML over one year. Then, we created a local sensitivity to disturbance using information about threat, endemism, spatial distribution and relative abundance of all species in the study area. We found that 37% of the forest birds showed different local sensitivity levels when compared with Parker's classification. Our results show that only the richness of high-sensitivity species from our local classification fitted the ecological indicator assumptions helping the environmental conditions evaluation of the studied patches. We conclude that species richness of each Parker's bird sensitivity levels do not necessarily perform as an ecological indicator at the local scale, and particularly in HML. Nevertheless, Parker's Neotropical bird sensitivity classification was used in 50% of EA we reviewed. In these, 76% assumed that it was an accurate ecological indicator of the local forest conditions for birds. The lack of clear criteria used in Parker's classification allows diverse interpretations by ornithologists, and there is no agreement about the ecological meaning of each sensitivity level and what environmental conditions each level may indicate of. Therefore, the use of Parker's classification in EA may jeopardize accurate interpretations of proposed anthropogenic impacts. Furthermore, because a bird species’ sensitivity often varies between locations, we argue that Parker's generalized classification of bird sensitivity should not be used as an indicator of forest environmental conditions in EA throughout HMLs in Neotropics. Rather, local bird ecological indices should be explored, otherwise, erroneous predictions of the anthropogenic impacts will continue to be common.  相似文献   
9.
This research presents the results of constructing and parameterizing an individual-based model of spatiotemporal dynamics of mixed forest stands. The model facilitates computerized experiments with forest stands having different combinations of species and age structures. These forest stands grow on temperate areas where light is the main system-forming factor that shapes and develops forest ecosystems. The model TEMFORM (TEMperate FORests Model) is developed with few equations and parameters, most of which can be estimated using standard forest inventory data. Parameterization of the model used the growth tables of a set of basic forest-forming species in Far East Russia. Simulation results of the development of the natural single- and mixed-species stands and the effects of different types of disturbances on the stand dynamics and compositions are presented.  相似文献   
10.
1. Populations in different locations can exchange individuals depending on the distribution and connectivity of suitable habitat, and the dispersal capabilities and behaviour of the organisms. We used an isotopic tracer, 15N, to label stoneflies (Leuctra ferruginea) to determine the extent of adult flight along stream corridors and between streams where their larvae live. 2. In four mass, mark‐capture experiments we added 15NH4Cl continuously for several weeks to label specific regions of streams within the Hubbard Brook Experimental Forest, NH, U.S.A. We collected adult stoneflies along the labelled streams (up to 1.5 km of stream length), on transects through the forest away from labelled sections (up to 500 m), and along an 800‐m reach of adjacent tributary that flows into a labelled stream. 3. Of 966 individual adult stoneflies collected and analysed for 15N, 20% were labelled. Most labelled stoneflies were captured along stream corridors and had flown upstream a mean distance of 211 m; the net movement of the population (upstream + downstream) estimated from the midpoint of the labelled sections was 126 m upstream. The furthest male and female travelled approximately 730 m and approximately 663 m upstream, respectively. We also captured labelled mature females along an unlabelled tributary and along a forest transect 500 m from the labelled stream, thus demonstrating cross‐watershed dispersal. 4. We conclude that the adjacent forest was not a barrier to dispersal between catchments, and adult dispersal linked stonefly populations among streams across a landscape within one generation. Our data on the extent of adult dispersal provide a basis for a conceptual model identifying the boundaries of these populations, whose larvae are restricted to stream channels, and whose females must return to streams to oviposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号