首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95374篇
  免费   7724篇
  国内免费   2034篇
  2023年   1399篇
  2022年   1351篇
  2021年   2228篇
  2020年   3072篇
  2019年   3856篇
  2018年   3534篇
  2017年   2607篇
  2016年   2575篇
  2015年   2953篇
  2014年   5385篇
  2013年   6844篇
  2012年   4161篇
  2011年   5389篇
  2010年   4706篇
  2009年   4580篇
  2008年   4838篇
  2007年   4891篇
  2006年   4280篇
  2005年   3978篇
  2004年   3616篇
  2003年   3123篇
  2002年   2552篇
  2001年   1840篇
  2000年   1518篇
  1999年   1540篇
  1998年   1286篇
  1997年   1098篇
  1996年   1104篇
  1995年   1223篇
  1994年   1155篇
  1993年   1052篇
  1992年   954篇
  1991年   842篇
  1990年   694篇
  1989年   636篇
  1988年   562篇
  1987年   502篇
  1986年   461篇
  1985年   676篇
  1984年   923篇
  1983年   720篇
  1982年   782篇
  1981年   625篇
  1980年   605篇
  1979年   470篇
  1978年   374篇
  1977年   365篇
  1976年   336篇
  1975年   245篇
  1973年   243篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.  相似文献   
2.
3.
Axonal regeneration after injury to the CNS is hampered by myelin‐derived inhibitors, such as Nogo‐A. Natural products, such as green tea, which are neuroprotective and safe for long‐term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor‐differentiated neuronal‐like Neuroscreen‐1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin‐3‐gallate (EGCG), prevent both the neurite outgrowth‐inhibiting activity and growth cone‐collapsing activity of Nogo‐66 (C‐terminal domain of Nogo‐A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67‐kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N‐acetylcysteine and cell‐permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady‐state generation (1–2 μM), mimicked GTPP in counteracting the action of Nogo‐66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo‐A.

  相似文献   

4.
Recent studies have emphasized the important role of microRNA (miRNA) clusters and common target genes in disease progression. Despite the known involvement of the miR‐192/215 family in many human diseases, its biological role in Hirschsprung disease (HSCR) remains undefined. In this study, we explored the role of the miR‐192/215 family in the pathogenesis of HSCR. Quantitative real‐time PCR and western blotting measured relative expression levels of miRNAs, mRNAs, and proteins in 80 HSCR patients and 77 normal colon tissues. Targets were evaluated by dual‐luciferase reporter assays, and the functional effects of miR‐192/215 on human 293T and SH‐SY5Y cells were detected by the Transwell assay, CCK8 assay and flow cytometry. MiR‐192/215 was significantly down‐regulated in HSCR tissue samples, and their knockdown inhibited cell migration and proliferation in the human 293T and SH‐SY5Y cell lines. Nidogen 1 (NID1) was confirmed as a common target gene of miR‐192/215 by dual‐luciferase reporter gene assay and its expression was inversely correlated with that of miR‐192/215 in tissue samples and cell lines. Silencing of NID1 could rescue the extent of the suppressing effects by miR‐192/215 inhibitor. The down‐regulation of miR‐192/215 may contribute to HSCR development by targeting NID1.

  相似文献   

5.
6.
To increase the menaquinone (MK) content of an Elizabethkingia meningoseptica, site-directed mutagenesis was generated to suppress 4-hydroxybenzoate octaprenyl transferase (UbiA) activity and subsequently blocked the ubiquinone (UQ) biosynthesis pathway. Fourteen conserved residues except L174 and G211 were mutated to analyze the effect of site-directed mutagenesis. The expression of UbiA in twelve mutants was decreased in both mRNA and protein levels, which resulted in the decrease of UQ concentration. Based on MenA expression level, 12 mutants were divided into two groups. Second group such as N72A, D76A, K81A, L139A, and D198A enhanced the expression of MenA, which increased MK production by 127.1%, 87.9%, 96.2%, 109.7% and 130.0% in wt-EmUbiA, respectively. In general, blocking UQ synthesis pathway for by site-directed mutagenesis of the active site of UbiA in E. meningoseptica was a promising strategy to increase MK production in E. meningoseptica.  相似文献   
7.
8.
9.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
10.
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号