首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  2020年   2篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有42条查询结果,搜索用时 250 毫秒
1.
Summary Crab photoreceptors were examined after treatment by the osmium-DMSO-osmium method for high-resolution scanning electron microscopy. This technique of specimen preparation was also adapted for transmission electron microscopy, enabling sections up to 1 urn thick to be viewed in a conventional microscope at 75 kV. With appropriate pretreatment, some cytoskeletal elements can be visualised by both techniques. The methods were then used to investigate some of the daily changes known to occur in photoreceptor cell structure. Striking differences were found in the structure of Golgi bodies present in retinula cells during the synthesis and breakdown phases of the daily cycle of photoreceptor membrane turnover. Cyclic changes were also noticed in the mitochondria of retinula cells, and additional evidence was found for a previously proposed model of rhabdomeral microvillus formation.  相似文献   
2.
Background information. The BOR (branchio‐oto‐renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr‐1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant‐negative effects of EYA1 mutations may have a role in the pathogenesis of BOR.  相似文献   
3.
As compared with other primates, humans have especially visible eyes (e.g., white sclera). One hypothesis is that this feature of human eyes evolved to make it easier for conspecifics to follow an individual's gaze direction in close-range joint attentional and communicative interactions, which would seem to imply especially cooperative (mututalistic) conspecifics. In the current study, we tested one aspect of this cooperative eye hypothesis by comparing the gaze following behavior of great apes to that of human infants. A human experimenter "looked" to the ceiling either with his eyes only, head only (eyes closed), both head and eyes, or neither. Great apes followed gaze to the ceiling based mainly on the human's head direction (although eye direction played some role as well). In contrast, human infants relied almost exclusively on eye direction in these same situations. These results demonstrate that humans are especially reliant on eyes in gaze following situations, and thus, suggest that eyes evolved a new social function in human evolution, most likely to support cooperative (mututalistic) social interactions.  相似文献   
4.
5.
In cubomedusae, the central nervous system (CNS) is found both in the bell (the ring nerve) and in the four eye-bearing sensory structures (the rhopalia). The ring nerve and the rhopalia are connected via the rhopalial stalks and examination of the structure of the rhopalial stalks therefore becomes important when trying to comprehend visual processing. In the present study, the rhopalial stalk of the cubomedusae Tripedalia cystophora has been examined by light microscopy, transmission electron microscopy, and electrophysiology. A major part of the ring nerve is shown to continue into the stalk and to contact the rhopalial neuropil directly. Ultrastructural analysis of synapse distribution in the rhopalial stalk has failed to show any clustering, which indicates that integration of the visual input is probably spread throughout the CNS. Together, the results indicate that cubomedusae have one coherent CNS including the rhopalia. Additionally, a novel gastrodermal nerve has been found in the stalk; this nerve is not involved in visual processing but is likely to be mechanosensory and part of a proprioceptory system.This work was supported by grants 621-2002-4873 from the Swedish Research Council to D.-E. Nilsson and 21-2204-04 from the Danish Research Council to A. Garm.  相似文献   
6.
Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-groups according to their structural and functional characteristics. All the crystal structures of catalytic domains of sub-groups have been elucidated, enabling us to understand their precise catalytic mechanism and to compare their structures across all sub-groups. In this review, I describe the structure and mechanism of catalytic domains of PTPs in the structural context. [BMB Reports 2012; 45(12): 693-699]  相似文献   
7.
8.
9.
Summary The uveal tract of the eyes of monkeys was examined by electron microscopy using both thin sections and freeze-fracture replicas. The ultrastructural features of the lamina fusca in the monkey resembled those previously described for rabbit. The lamina fusca was composed of numerous interleaved processes of fibroblastic and pigmented cells and contained tight junctions between fibroblastic cell processes that were predominantly discontinuous, as well as numerous fenestrations through the attenuated cell processes. There was no regional compaction of cellular processes traversing the entire uvea at the level of the ora serrata as reported previously in hamster eyes.  相似文献   
10.
Zusammenfassung Die Retinula im Ommatidium der Mehlmotte besteht aus einer wechselnden Anzahl (9–12, meist 11) langgestreckter, prismatischer Sinneszellen. Außerdem enthält jede Retinula nahe der Basalmembran im Zentrum zwischen diesen distalen Retinulazellen noch eine basale Retinulazelle. Die Längsachse der Retinula wird von der Achsenstruktur eingenommen, die aus Mikrovilli besteht. Ihr distaler Teil ist der Achsenfaden, der breitere, proximale Teil bildet das Rhabdom. Dieses erscheint im Querschnitt meist vierstrahlig gelappt, da seine Außenseite in Längsrichtung tief gekehlt ist. Der Rhabdomquerschnitt gliedert sich in mehrere Schöpfe parallel angeordneter Mikrovilli (Rhabdomsektoren); jeder Rhabdomsektor besteht aus 1 oder 2 Rhabdomeren. Die basale Retinulazelle entsendet einen kleinen Schopf von Mikrovilli in die proximale Spitze des Rhabdoms. Die distalen Retinulazellen setzen sich proximal in Neuriten fort, welche sich in Einkehlungen der basalen Retinulazelle bzw. der Tracheenendzelle einschmiegen. Jeweils eine Tracheole durchbricht zusammen mit dem Neuritenstrang einer Retinula die Basalmembran; sie verzweigt sich distal zu ca. 30 Tracheolen, die die Retinula umhüllen.Die Kristallkegelzellen grenzen distal an die Cornea; proximal laufen die Kristallkegelzellen eines Ommatidiums in einen gemeinsamen Fortsatz aus, der zwischen den Retinulazellen unmittelbar am Achsenfaden endet. — Nur das helladaptierte Auge wurde untersucht. Hierbei erscheint im distalen Teil der Retinula nur der Achsenfaden lichtdurchlässig, das Cytoplasma der Retinulazellen hingegen von Pigmentgrana durchsetzt und für Licht undurchlässig.
Fine structure of the eye of the meal moth, Ephestia kuehniella Zeller (Lepidoptera, Pyralididae)
Summary In each ommatidium of the meal moth a retinula is formed from a varying number (9–12, mostly 11) of elongated, prismatic sense cells. In addition, a basal retinular cell is situated near the basement membrane in the center of the other (distal) retinular cells. The axis of the retinula is occupied by many microvilli forming the axial structure, the distal section of which is the slender axial thread. Proximally, the axial structure widens (to 8.5 m instead of 1 m in diameter) and is now called rhabdom. Cross sections of the rhabdom mostly look like a petaloid with four petals; this figure is due to longitudinal infoldings along the length of the rhabdom surface. The rhabdom cross section is subdivided into several brushes of microvilli (rhabdom sectors), each one being characterized by an approximately parallel arrangement of its microvilli. One rhabdom sector may be composed of one or two rhabdomeres respectively.The basal retinular cell participates in rhabdom formation through a small brush of microvilli at the proximal end of the rhabdom. Proximally, the distal retinular cells taper into slender neurites which are embedded in grooves at the surface of the basal retinular cell and the tracheal end cell respectively. One tracheole piercing the basement membrane together with the neurites of one retinula branches into about 30 tracheoles surrounding the retinula.The crystalline cone cells touch the cornea; proximally, their cytoplasm forms a point which eventually terminates amongst the distal tips of the retinular cells, immediately at the axial thread.—Our work was restricted to light adapted eyes; in this condition, light transmission in the distal part of the retinula seems to be blocked by retinular cell pigment except inside the axial thread.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号