首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5916篇
  免费   439篇
  国内免费   138篇
  2024年   10篇
  2023年   121篇
  2022年   90篇
  2021年   182篇
  2020年   156篇
  2019年   243篇
  2018年   178篇
  2017年   165篇
  2016年   179篇
  2015年   179篇
  2014年   282篇
  2013年   335篇
  2012年   233篇
  2011年   206篇
  2010年   204篇
  2009年   172篇
  2008年   229篇
  2007年   237篇
  2006年   186篇
  2005年   167篇
  2004年   196篇
  2003年   160篇
  2002年   185篇
  2001年   163篇
  2000年   112篇
  1999年   102篇
  1998年   118篇
  1997年   104篇
  1996年   79篇
  1995年   91篇
  1994年   105篇
  1993年   90篇
  1992年   121篇
  1991年   107篇
  1990年   97篇
  1989年   97篇
  1988年   117篇
  1987年   95篇
  1986年   79篇
  1985年   87篇
  1984年   109篇
  1983年   77篇
  1982年   80篇
  1981年   67篇
  1980年   42篇
  1979年   23篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1972年   6篇
排序方式: 共有6493条查询结果,搜索用时 62 毫秒
1.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
2.
Okadaic acid (OA), a protein phosphatase inhibitor, was found to induce hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. The process was dose dependent. Vimentin phosphorylation was initially enhanced by 400 nM OA in 30 min and reached maximal level (about 26-fold) when cells were treated with 400 nM OA for 90 min. Upon removal of OA, dephosphorylation of the hyperphosphorylated vimentin was observed and the levels of phosphorylation returned to that of the controls after the cells recovered under normal growing conditions for 11 h. The phosphorylation and dephosphorylation of vimentin induced by OA concomitantly resulted in reversible reorganization of vimentin filaments and alteration of cell morphology. Cells rounded up as they were entering mitosis in the presence of OA and returned to normal appearance after 11 h of recovery. Immuno-staining with anti-vimentin antibody revealed that vimentin filaments were disassembled and clustered around the nucleus when the cells were treated with OA but subsequently returned to the filamentous states when OA was removed. Two-dimensional electrophoresis analysis further revealed that hyperphosphorylation of vimentin generated at least seven isoforms having different isoelectric points. Furthermore, the enhanced vimentin phosphorylation was accompanied by changes in the detergent-solubility of the protein. In untreated cells, the detergent-soluble and -insoluble vimentins were of equal amounts but the solubility could be increased when vimentins were hyperphosphorylated in the presence of OA. Taken together, the results indicated that OA could be involved in reversible hyperphosphorylation and reorganization of vimentin intermediate filaments, which may play an important role in the structure-function regulation of cytoskeleton in the cell.  相似文献   
3.
Numerous data suggested that the pharmacological and biochemical properties of 5-hydroxytryptamine1A (5-HT1A) receptors exhibit some regional differences in the CNS, notably within the raphe nuclei compared with various forebrain areas (such as the hippocampus). This possibility has been further investigated in the dorsal raphe nucleus and two areas within the hippocampus, the dentate gyrus and the CA1 area, using the quantitative autoradiographic technique. The potencies of 5'-guanylylimidodiphosphate to inhibit the specific binding of 125I-Bolton-Hunter-8-methoxy-2-(N-propyl-N-propylamino)tetralin (125I-BH-8-MeO-N-PAT) to 5-HT1A sites and of N-ethylmaleimide to block these sites irreversibly were identical in the dorsal raphe nucleus and the hippocampal areas in rat brain sections. In contrast, slight but significant differences were noted in the pH dependence and pharmacological properties of 5-HT1A sites labeled by 125I-BH-8-MeO-N-PAT in these three regions. Similarly, heat denaturation experiments and tissue exposure to either phospholipase A2 or the alkylating agent 8-methoxy-2-(N-2'-chloropropyl,N-propyl)aminotetraline revealed regional differences in the properties of 5-HT1A sites. However, in most cases, the observed variations were of greater amplitude between the CA1 area and the dentate gyrus, where 5-HT1A sites are located postsynaptically, than between any one of these areas and the dorsal raphe nucleus where they act as (presynaptic) somatodendritic autoreceptors. These data further support that subtypes of 5-HT1A receptors probably exist in the rat brain, but this heterogeneity seems unrelated to the pre- or post-synaptic location of these receptors.  相似文献   
4.
Summary With the aid of an indirect immunofluorescence technique neurones containing a gastrin-like substance were identified in the brain of Salmo gairdneri. The perikarya of these neurones appear to be located along the periventricular part of the nucleus lateralis tuberis between the hypophysial stalk and the most rostral tip of the saccus vasculosus. The fibres of these perikarya run rostrally toward the hypophysis, where they can be followed in the protrusions of the neurohypophysis into the proximal pars distalis. Here the bundle of immunoreactive fibres divides into numerous smaller bundles and into single fibres. Immunohistochemical specificity tests have shown this immunoreactive substance to belong to the gastrin group, sharing an antigenic determinant with cholecystokinin (CCK) and pentagastrin (common aminoacid sequence Trp-Met-Asp-Phe). A possible function of these gastrin (or CCK)-containing neurones in the rainbow trout is discussed.  相似文献   
5.
This paper presents methods for the stereological analysis of spatial fibre systems on the base of planar or thin sections. Under the assumption that the cross-section figures of the tubular fibres can be measured, the orientation distribution of the fibre system and its line density Lv can be determined from one section only and without distributional assumptions. A simple way to study the degree of randomness of fibre systems consists in the statistical analysis of the point pattern of centres of intersection figures. More sophisticated methods are of stereological nature and yield the spatial reduced second moment measure. Similarly also correlations between two fibre systems can be quantified. The methods are demonstrated by two examples concerning samples of human brain.  相似文献   
6.
Evidence for the presumed linkage between the enigmatic rodlet cells of fish and exposure to helminths is anecdotal and indirect. We evaluated the proliferation and development of rodlet cells in the optic lobes of fathead minnows exposed to cercariae of Ornithodiplostomum ptychocheilus. Mean rodlet cell densities (ca. 10/mm2) in the optic lobes were similar between unexposed controls and minnows with 1- and 2-week old infections. Rodlet cell densities increased at 4 weeks p.i., reaching maxima (ca. 200/mm2) at 6 weeks p.i., followed by a decline at 9 weeks. This temporal pattern of proliferation and maturation paralleled the development of metacercariae within the optic lobes. Unencysted metacercariae develop rapidly within tissues of the optic lobes for approximately 4 weeks after penetration by cercariae, then shift to the adjacent meninges to encyst. The former stage is associated with tissue damage, the latter with massive inflammation of the meninges. Thus, peak densities and maturation of rodlet cells correspond to the period when inflammation of the meninges caused by the large metacercarial cysts is at a maximum. Our results support recent contentions that rodlet cells comprise part of the host inflammatory defence response.  相似文献   
7.
Abstract: Analysis of the cell-free translation products of polysomes isolated from fetal brain and other organs indicates that elevation of maternal body temperature induces the synthesis of a heat shock protein of molecular weight 74,000 (74K). The newborn mammal is particularly sensitive to induction of the 74K protein. As early postnatal development proceeds, higher body temperatures are required to induce synthesis of the 74K heat shock protein.  相似文献   
8.
9.
Antibodies to human amyloid precursor protein (APP695) and beta‐amyloid peptide (Aβ1‐42) were used to determine timing of amyloidosis in the brain of kokanee salmon (Oncorhynchus nerka kennerlyi) in one of four reproductive stages: immature (IM), maturing (MA), sexually mature (SM), and spawning (SP), representing a range of aging from somatically mature but sexually immature to spawning and somatic senescence. In IM fish, immunoreactive (ir) intracellular APP occurred in 18 of 23 brain regions. During sexual maturation and aging, the number of neurons expressing APP increased in 11 of these APP‐ir regions. Aβ‐ir was absent in IM fish, present in seven regions in MA fish, moderately abundant in 15 regions in SM fish, and was most abundant in all brain regions of SP fish exhibiting Aβ‐ir. Intracellular APP‐ir was observed in brain regions involved in sensory integration, olfaction, vision, stress responses, reproduction, and coordination. Intra‐ and extracellular Aβ1‐42 immunoreactivity (Aβ‐ir) was present in all APP‐ir regions except the nucleus lateralis tuberis (hypothalamus) and Purkinje cells (cerebellum). APP‐ir and Aβ deposition increase during aging. APP‐ir is present in IM fish; Aβ‐ir usually appears first in MA or SM fish and increases in SM fish as does APP‐ir. Extracellular Aβ deposition dramatically increases between SM and SP stages (1–2 weeks) in all fish, indicating an extremely rapid and synchronized process. Rapid senescence observed in pacific salmon could make them a useful model to investigate timing of amyloidosis and neurodegeneration during brain aging. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 11–20, 2002  相似文献   
10.
Abstract: The developmental pattern of glycoprotein-galactosyltransferase activity was determined in the microsomal fractions of three regions of the embryonic rat brain and in parts of the visual system and the cerebellum postnatally. It could be shown that the enzyme activity was highest in the embryonic brain, where regional differences were apparent, and decreased progressively after birth. The enzyme profile in the cerebellum showed no marked postnatal changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号