首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   39篇
  国内免费   7篇
  2023年   10篇
  2022年   6篇
  2021年   9篇
  2020年   13篇
  2019年   12篇
  2018年   22篇
  2017年   19篇
  2016年   15篇
  2015年   13篇
  2014年   38篇
  2013年   42篇
  2012年   21篇
  2011年   22篇
  2010年   14篇
  2009年   35篇
  2008年   39篇
  2007年   31篇
  2006年   27篇
  2005年   33篇
  2004年   22篇
  2003年   23篇
  2002年   23篇
  2001年   12篇
  2000年   7篇
  1999年   9篇
  1998年   16篇
  1997年   15篇
  1996年   10篇
  1995年   12篇
  1994年   17篇
  1993年   14篇
  1992年   20篇
  1991年   10篇
  1990年   10篇
  1989年   10篇
  1988年   14篇
  1987年   11篇
  1986年   12篇
  1985年   4篇
  1984年   11篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1973年   3篇
  1972年   4篇
  1970年   5篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
1.
We aimed to investigate the elastic modulus of trabeculae using tensile tests and assess the effects of nanostructure at the hydroxyapatite (HAp) crystal scale on the elastic modulus. In the experiments, 18 trabeculae that were at least 3 mm in length in the proximal epiphysis of three adult bovine femurs were used. Tensile tests were conducted using a small tensile testing device coupled with microscopy under air-dried condition. The c-axis orientation of HAp crystals and the degree of orientation were measured by X-ray diffraction. To observe the deformation behavior of HAp crystals under tensile loading, the same tensile tests were conducted in X-ray diffraction measurements. The mineral content of specimens was evaluated using energy dispersive X-ray spectrometry. The elastic modulus of a single trabecula varied from 4.5 to 23.6 GPa, and the average was 11.5±5.0 GPa. The c-axis of HAp crystals was aligned with the trabecular axis and the crystals were lineally deformed under tensile loading. The ratio of the HAp crystal strain to the tissue strain (strain ratio) had a significant correlation with the elastic modulus (r=0.79; P<0.001). However, the mineral content and the degree of orientation did not vary widely and did not correlate with the elastic modulus in this study. It suggests that the strain ratio may represent the nanostructure of a single trabecula and would determine the elastic modulus as well as mineral content and orientation.  相似文献   
2.
Cytoplasmic dynein play an important role in transporting various intracellular cargos by coupling their ATP hydrolysis cycle with their conformational changes. Recent experimental results showed that the cytoplasmic dynein had a highly variable stepping pattern including “hand-over-hand”, “inchworm” and “nonalternating-inchworm”. Here, we developed a model to describe the coordinated stepping patterns of cytoplasmic dynein, based on its working cycle, construction and the interaction between its leading head and tailing head. The kinetic model showed how change in the distance between the two heads influences the rate of cytoplasmic dynein under different stepping patterns. Numerical simulations of the distribution of step size and striding rate are in good quantitative agreement with experimental observations. Hence, our coordinated stepping model for cytoplasmic dynein successfully explained its diverse stepping patterns as a molecular motor. The cooperative mechanism carried out by the two heads of cytoplasmic dynein shed light on the strategies adopted by the cytoplasmic dynein in executing various functions.  相似文献   
3.
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) add 15- or 20-carbon lipids, respectively, to proteins that terminate with a CaaX motif. These posttranslational modifications of proteins with lipids promote protein interactions with membrane surfaces in cells, but the in vivo importance of the CaaX prenyltransferases and the protein lipidation reactions they catalyze remain incompletely defined. One study concluded that a deficiency of FTase was inconsequential in adult mice and led to little or no tissue pathology. To assess the physiologic importance of the CaaX prenyltransferases, we used conditional knockout alleles and an albumin-Cre transgene to produce mice lacking FTase, GGTase-I, or both enzymes in hepatocytes. The hepatocyte-specific FTase knockout mice survived but exhibited hepatocellular disease and elevated transaminases. Mice lacking GGTase-I not only had elevated transaminases but also had dilated bile cannaliculi, hyperbilirubinemia, hepatosplenomegaly, and reduced survival. Of note, GGTase-I-deficient hepatocytes had a rounded shape and markedly reduced numbers of actin stress fibers. Hepatocyte-specific FTase/GGTase-I double-knockout mice closely resembled mice lacking GGTase-I alone, but the disease was slightly more severe. Our studies refute the notion that FTase is dispensable and demonstrate that GGTase-I is crucial for the vitality of hepatocytes.  相似文献   
4.
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.  相似文献   
5.
The light distribution profiles of plate-type photobioreactors were investigated. Light reaching individual channels of a plate module is dependent on the orientation of the module to the sun, the position of the channel within a plate and the position of the plate. The highest incident radiation was measured at the south oriented side of the first channel of the front plate. The light intensity decreased from top to ground channels. Different types of light diffusing optical fibers (LDOF) were characterized with respect to their applicability in photobioreactor systems.  相似文献   
6.
Here an all‐purpose fibrous electrode based on MoS2 is demonstrated, which can be employed for versatile energy harvesting and storage applications. In this coaxial electrode, ultrathin MoS2 nanofilms are grown on TiO2 nanoparticles coated carbon fiber. The high electrochemical activity of MoS2 and good conductivity of carbon fiber synergistically lead to the remarkable performances of this novel composite electrode in fibrous dye‐sensitized solar cells (showing a record‐breaking conversion efficiency of 9.5%) and high‐capacity fibrous supercapacitors. Furthermore, a self‐powering energy fiber is fabricated by combining a fibrous dye‐sensitized solar cell and a fibrous supercapacitor into a single device, showing very fast charging capability (charging in 7 s under AM1.5G solar illumination) and an overall photochemical‐electricity energy conversion efficiency as high as 1.8%. In addition, this wire‐shaped electrode can also be used for fibrous Li‐ion batteries and electrocatalytic hydrogen evolution reactions. These applications indicate that the MoS2‐based all‐purpose fibrous electrode has great potential for the construction of high‐performance flexible and wearable energy devices.  相似文献   
7.
Summary Immuno-gold labeling at the electron-microscopy level was used to investigate the distribution of tropoelastin in the chick eye. Intense staining was found in the amorphous part of mature elastic fibers in different regions of the organ. In elaunin fibers, both the amorphous core and the surrounding microfibrils were clearly labeled. In addition, reactive sites were detected in the oxitalan fibers of the stroma of the cornea and in Descemet's membrane, which showed a gradient of reactive sites increasing from the center toward the periphery. Oxitalan fibers of the stroma often fused with Descemet's membrane; the pattern of immunological staining suggested a continuity between the two structures. In the ciliary zonule, labeling for tropoelastin was observed in discrete areas on the bundles of microfibrils. The results show a complex structural organization of elastic tissue; this may be important in endowing the various parts of the eye with different mechanical properties.  相似文献   
8.
To elucidate how maturation impacts the structure and mechanics of meniscus extracellular matrix (ECM) at the length scale of collagen fibrils and fibers, we tested the micromechanical properties of fetal and adult bovine menisci via atomic force microscopy (AFM)-nanoindentation. For circumferential fibers, we detected significant increase in the effective indentation modulus, Eind, with age. Such impact is in agreement with the increase in collagen fibril diameter and alignment during maturation, and is more pronounced in the outer zone, where collagen fibrils are more aligned and packed. Meanwhile, maturation also markedly increases the Eind of radial tie fibers, but not those of intact surface or superficial layer. These results provide new insights into the effect of maturation on the assembly of meniscus ECM, and enable the design of new meniscus repair strategies by modulating local ECM structure and mechanical behaviors.  相似文献   
9.
The hippocampus is associated with learning and memory function and shows neurochemical changes in aging processes. Calbindin D-28k (CB) binds calcium ion with a fast association rate. We examined age-related changes in CB immunoreactivity and its protein level in the gerbil hippocampus during normal aging. In the hippocampal CA1 region (CA1) and CA2, CB immunoreaction was found in some neurons in the stratum pyramidale (SP) at postnatal month 1 (PM 1). CB immunoreactivity in neurons was markedly increased at PM 3. Thereafter, CB immunoreactivity was decreased with time: CB-immunoreactive (+) neurons were fewest at PM 24. In the CA3, a few CB+ neurons were found only in the SP at PM 1 and in the stratum radiatum at PM 18 and 24. In addition, mossy fibers were stained with CB at PM 1. CB immunoreactivity in mossy fibers was markedly increased at PM 3, thereafter it was decreased with time. In the dentate gyrus, many granule cells (GC) in the granule cell layer were stained with CB at PM 1. CB immunoreactivity in GC was markedly increased at PM 3, thereafter CB immunoreactivity was decreased with time. In Western blot analysis, CB protein level in the gerbil hippocampus was highest at PM 3, thereafter CB protein levels were decreased with time. This result indicates that CB in the gerbil hippocampus is abundant at PM 3 and is decreased with age.  相似文献   
10.
We present a novel biorobotic framework comprised of a biological muscle-tendon unit (MTU) mechanically coupled to a feedback controlled robotic environment simulation that mimics in vivo inertial/gravitational loading and mechanical assistance from a parallel elastic exoskeleton. Using this system, we applied select combinations of biological muscle activation (modulated with rate-coded direct neural stimulation) and parallel elastic assistance (applied via closed-loop mechanical environment simulation) hypothesized to mimic human behavior based on previously published modeling studies. These conditions resulted in constant system-level force-length dynamics (i.e., stiffness), reduced biological loads, increased muscle excursion, and constant muscle average positive power output—all consistent with laboratory experiments on intact humans during exoskeleton assisted hopping. Mechanical assistance led to reduced estimated metabolic cost and MTU apparent efficiency, but increased apparent efficiency for the MTU + Exo system as a whole. Findings from this study suggest that the increased natural resonant frequency of the artificially stiffened MTU + Exo system, along with invariant movement frequencies, may underlie observed limits on the benefits of exoskeleton assistance. Our novel approach demonstrates that it is possible to capture the salient features of human locomotion with exoskeleton assistance in an isolated muscle-tendon preparation, and introduces a powerful new tool for detailed, direct examination of how assistive devices affect muscle-level neuromechanics and energetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号