首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   1篇
  2023年   4篇
  2022年   11篇
  2021年   12篇
  2020年   11篇
  2019年   7篇
  2018年   5篇
  2017年   15篇
  2016年   16篇
  2015年   3篇
  2014年   40篇
  2013年   23篇
  2012年   8篇
  2011年   15篇
  2010年   4篇
  2009年   12篇
  2008年   14篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   11篇
  2002年   4篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有312条查询结果,搜索用时 359 毫秒
1.
2.
The use and utility of EMG biofeedback with chronic schizophrenic patients   总被引:1,自引:0,他引:1  
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.We would like to express our appreciation for the contributions the following people made to this project: Drs. Barry Smith, Robert Steele, Agnes Hartfield, Jeffrey Barth, Althea Wagman, and the late Harold Weiner; Earl Downs and the participating staff at Springfield State Hospital Center; and Robert Kline and Michael Kelley, who performed the data analyses. This research was supported in part by a grant from the Computer Science Center at the University of Maryland.  相似文献   
3.
Handgrip force (HF), maximal pinch force (MF), muscle endurance (ME), and the median power frequency (MdPF) of the activity shown in the electromyogram (EMG) were studied at various altitudes in eight normal healthy subjects. MF and ME were measured between the index finger and thumb, and all measurements were obtained at altitudes ranging from 610 to 4860 m during an expedition in the Qinghai Plateau in China. With the change in altitude HF, ME, and MF showed no significant change. Compared to the MdPF at 2260 m on ascent, the MdPF at other altitudes showed a significant decrease (P<0.01). Thus, we conclude that muscle performance (HF, MF, and ME) was not affected by the environment at high altitude. However, MdPF was affected and the mean MdPF at 610 m after the expedition did not recover to initial values of MdPF. We suggest these results may have been affected by fatigue and chronic exposure to the hypobaric hypoxic environment, since the members of the expedition party expressed feelings of sluggishness and fatigue after the expedition.  相似文献   
4.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   
5.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   
6.
The feasibility of action potential velocity (APV) measurements in the upper trapezius muscle with surface electrodes has been investigated. A four-bar electrode array connected to a double differential amplifier system was used. APV was estimated by a polarity correlation algorithm implemented on a PC computer. Six females and six males participated in the investigation. Attempts to get acceptable APV estimates were made in five electrode locations, 5 mm interspaced along the upper rim, beginning in the most distal part. Data were collected while holding out the arm horizontally in the sagittal plane. The results indicate that the method worked in five out of six males while it was difficult to get reliable estimates in the female group. Furthermore, the two most distal electrode locations gave the best results. In these two locations, the average APV for males was 4.8 m s−1, 0.9. The difficulties in the female group were possibly due to small muscle dimensions and subcutaneous fat. Use of the double differential technique seems to be essential; attempts with the single differential technique were fruitless.  相似文献   
7.
The purpose of this article is to describe the treatment of a 45-year-old male with a hyperfunctional voice disorder by a biofeedback therapist and a speech-language pathologist. The interdisciplinary approach to the treatment of this voice disorder involved the combined use of traditional voice therapy techniques and EMG biofeedback procedures together with cognitive behavioral therapy. Voice therapy was facilitated through the use of a computer-based, speech-monitoring system. The remediation of this voice disorder was attributed to the collaborative efforts of two professionals representing diverse professional training and treatment protocols. The results showed reductions in muscle activity in the infrahyoid and laryngeal areas as well as improved use of proper breathing and voicing onset behaviors. Follow-up at 10 and 15 months posttreatment intervals indicated that the client had retained all target voice skills and the tension reduction/biofeedback skills. Results suggest that interdisciplinary, collaborative efforts using biofeedback and voice therapy can prove beneficial in the treatment of hyperfunctional voice disorders.Note: Neither author has been compensated in any way for the use of the CAFET System nor does either have any financial interest in the company.  相似文献   
8.
A technique is reported for the long-term application of surface electrodes for ambulatory electromyographic (EMG) recording. Prior to electrode application the surrounding skin is lightly painted with tincture of benzoin. This treatment improves adherence to the skin of disposable electrodes and electrode attachment collars, reduces skin trauma associated with electrode removal, and minimizes sensitivity to electrode adhesives.This research was supported in part by NIH grant No. NS25114.  相似文献   
9.
Chicks and chick embryos provide a useful model system for the study of related to the development of motor behaviors. EMG and kinematic analyses of leg movements have been used to provide new data on the organization of embryonic motility. These data suggest that the circuitry needed to produce a basic, coordinated motor pattern is available early in development. This circuitry then appears to be retained throughout life. Evidence from analysis of EMG patterns and leg deafferentation studies suggest that the output of this basic circuit can be modulated by sensory input to produce the motor patterns of later behaviors, such as hatching and walking. If the same circuitry is present throughout life, then mechanisms for initiation and termination of particular behaviors must be available to ensure that specific behaviors are turned on and off at appropriate times. For example, hatching can be turned on by a specific sensory signal: proprioceptive signals from the bent neck. In addition to reviewing current research on the development of chick motor behaviors, methodological considerations and suggestions for future research are presented. © 1992 John Wiley & Sons, Inc.  相似文献   
10.
The gluteal musculature of primates has been a focus of great research interest among those who study human evolution. Most current theorists agree that gluteus superficialis (= maximus) need not have changed its action in the step from pongid to hominid, but dispute has arisen over a purported change in action and role of the gluteus medius. To clarify the functions of gluteus medius, gluteus superficialis, and tensor fasciae femoris during ape locomotion, we conducted a telemetered electromyographic study of these muscles in two gibbons, one orangutan, and four chimpanzees as they walked bipedally on the ground and on a horizontal tree trunk, walked quadrupedally on the same substrates, and climbed a vertical tree trunk. The results indicate that the gluteus medius of apes is not, as has been previously suggested, primarily an extensor of the thigh; its action is chiefly that of medial rotation. The role of the gluteus medius during bipedality is the same in apes and humans–to provide side-to-side balance of the trunk at the hip. The change in the hominid lateral balance mechanism can be viewed as primarily osteological, allowing preservation of the same muscle function with an extended thigh. As a result, the stride length is increased and there occurs a diminution of the demands placed on other muscles to maintain anteroposterior balance at the hip and knee. Our data also support the view that vertical climbing may be specifically preadaptive to bipedalism. One may picture the earliest hominid as part biped, when on the ground traveling between scattered food trees, and part climber, when moving from the ground to food.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号