首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4000篇
  免费   225篇
  国内免费   67篇
  2023年   73篇
  2022年   125篇
  2021年   139篇
  2020年   164篇
  2019年   193篇
  2018年   197篇
  2017年   128篇
  2016年   116篇
  2015年   116篇
  2014年   386篇
  2013年   417篇
  2012年   280篇
  2011年   360篇
  2010年   252篇
  2009年   197篇
  2008年   178篇
  2007年   172篇
  2006年   143篇
  2005年   109篇
  2004年   94篇
  2003年   78篇
  2002年   84篇
  2001年   38篇
  2000年   25篇
  1999年   24篇
  1998年   18篇
  1997年   20篇
  1996年   10篇
  1995年   9篇
  1994年   16篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1985年   4篇
  1984年   13篇
  1983年   16篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有4292条查询结果,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are involved in the pathophysiology of fulminant hepatic failure. Therefore, we developed polyethylene glycol-conjugated bovine serum albumin with multiple reduced thiols (PEG-BSA-SH) for the treatment of fulminant hepatic failure. As a long-circulating ROS scavenger, PEG-BSA-SH effectively scavenged highly reactive oxygen species and hydrogen peroxide in buffer solution. PEG-BSA-SH showed a long circulation time in the plasma after intravenous injection into mice. Fulminant hepatic failure was induced by intraperitoneal injection of lipopolysaccharide and d-galactosamine (LPS/d-GalN) into mice. The LPS/d-GalN-induced elevation of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels was significantly inhibited by a bolus intravenous injection of PEG-BSA-SH. Furthermore, the changes in hepatic lipid peroxide and hepatic blood flow were effectively suppressed by PEG-BSA-SH. In contrast, l-cysteine, glutathione, and dithiothreitol, three traditional reduced thiols, had no statistically significant effects on the serum levels of ALT or AST. These findings indicate that PEG-BSA-SH is a promising ROS scavenger and useful in the treatment of fulminant hepatic failure.  相似文献   
2.
Herein we describe the design of a novel series of ATP competitive B-Raf inhibitors via structure-based methods. These 3-N-methylquinazoline-4(3H)-one based inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. Optimization led to the identification of compound 16, a potent, selective and orally available agent with excellent pharmacokinetic properties and robust tumor growth inhibition in xenograft studies. Our work also demonstrates that by replacing an aryl amide with an aryl sulfonamide, a multikinase inhibitor such as AZ-628, can be converted to a selective B-Raf inhibitor, a finding that should have broad application in kinase drug discovery.  相似文献   
3.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   
4.
The emergence of multidrug resistant microorganisms has triggered the impending need for new aitimicrobial strategies. The antivirulence strategy with the benefite of alleviating the drug resistance becomes the focus of research. In this study, 22 quorum sensing inhibitors were synthesized by mimicking the structure of autoinducer and acinetobactin and up to 34% biofilm inhibition was observed with 5u. The biofilm inhibition effect was further demonstrated with extracellular polysaccharides inhibition and synergism with Gentamycin sulphate.  相似文献   
5.
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance.  相似文献   
6.
As an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions. We apply GEM to the discovery of epitopes important for shedding inhibition of MICA/B and validate the epitopes at the residue level by alanine scanning and X-ray crystallography (Protein Data Bank accession numbers 6DDM (1D5 Fab-MICA*008), 6DDR (13A9 Fab-MICA*008), 6DDV (6E1 Fab-MICA*008). Furthermore, we show that potent inhibition of MICA shedding can be achieved by antibodies that bind GEM epitopes adjacent to previously reported cleavage sites, and that these anti-MICA/B antibodies can prevent tumor growth in vivo.  相似文献   
7.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
8.
9.
10.
Cystine-knot miniproteins, also known as knottins, constitute a large family of structurally related peptides with diverse amino acid sequences and biological functions. Knottins have emerged as attractive candidates for drug development as they potentially fill a niche between small molecules and protein biologics, offering drug-like properties and the ability to bind to clinical targets with high affinity and selectivity. Due to their extremely high stability and unique structural features, knottins also demonstrate promise in addressing challenging drug development goals, including the potential for oral delivery and the ability to access intracellular drug targets. Several naturally-occurring knottins have recently received approval for treating chronic pain and irritable bowel syndrome, while others are under development for tumor imaging applications. To expand beyond nature’s repertoire, rational and combinatorial protein engineering methods are generating tumor-targeting knottins for use as cancer diagnostics and therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号