首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   10篇
  国内免费   1篇
  2023年   6篇
  2021年   2篇
  2020年   5篇
  2019年   11篇
  2018年   5篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   4篇
  2005年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Previous investigations, performed on isolated rat atria, showed that the lipophylic spin-trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) is able to prevent the acute cardiotoxic effects produced by doxorubicin (DXR), whereas the hydrophylic compound 5,5-dimethyl-pyrroline-N-oxide (DMPO) is inactive. The present study was designed to ascertain whether differences in the pharmacological effects of the two spin traps are related to their different subcellular distribution. Langendorff rat hearts were perfused for 60 minutes with [I4C]-DXR and either PBN or DMPO. The subcellular mapping of the three compounds was performed by measuring DXR by liquid scintillation counting, PBN by GC/MS, and DMPO by HPLC in the following isolated fractions: nuclei, mitochondria, sarcoplasmic reticulum, sarcolemma, cytosol. DMPO was shown to accumulate in the cytosolic compartment; both PBM and DXR are taken up by nuclei and mitochondria, while only trace amounts of DXR were detected in the sarcoplasmic reticulum. These results suggest that mitochondrial (and not sarcoplasmic) enzymes are mainly involved in DXR-induced free radical production, which is thought to cause the acute cardiotoxic effects of DXR. An involvement of DXR-induced free radical generation in the nuclear compartment seems unlikely in the short-term “in vitro” effects observed with the experimental model adopted for these studies, although it may play a role in the delayed pathology.  相似文献   
2.
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and children; however, its clinical application is limited by its cardiotoxicity. Previous studies have shown that children are more susceptible to the cardiotoxic effects of DOX than adults, which may be related to different maturity levels of cardiomyocyte, but the underlying mechanisms are not fully understood. Moreover, researchers investigating DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardioprotective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different maturity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads to more ROS (reactive oxygen species) production in the day 60 CMs than in the relatively immature group due to increased mitochondria number. Moreover, the day 60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much more severe DNA damage. These results suggest that immature cardiomyocytes are more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, which leads to more DNA damage.  相似文献   
3.
4.
We review the role of echocardiography and biomarkers in detection of radiation-induced cardiac toxicity (RICT). RICT is related to micro- and macrovascular damage which induce inflammation, endothelial dysfunction, accelerated atherosclerosis, myocyte degeneration and fibrosis. The process is cumulative dose to the heart and target volume dependent. Furthermore, the damage of the heart is frequently potentiated by the adjunctive chemotherapy. The clinical manifestations of RICT may acutely develop but most often become clinically apparent several years after irradiation. RICT clinical manifestation covers a wide spectrum of pathologies including pericarditis, coronary artery disease (CAD), myocardial infarction, valvular heart disease, rhythm abnormalities, and non-ischemic myocardial and conduction system damages. Echocardiography and cardiac markers are important diagnostic tools for the detection of RICT.  相似文献   
5.
候选药物对心脏的毒副作用是其在开发过程中被淘汰的重要原因之一.传统药物评价所采用的动物模型存在种属差异、成本高、效率低等缺陷.因此,近年来随着干细胞和生物打印等技术的快速发展,体外心脏组织模型的构建受到了越来越多地关注.本文追踪体外心脏模型构建的起源与发展,综述模型所利用的心肌细胞来源以及二维、三维模型构建的相关技术与方法,着重阐述心肌组织模型血管化的重要性及研究进展,并对该领域未来的发展方向进行展望,以期为体外心肌组织模型在药物评价方面的研究和应用提供新思路.  相似文献   
6.
Abstract

Cardiotoxicity is one amongst the adverse effect of Osimertinib delineate in clinical trials and related to escalating doses. To triumph over the drawbacks of Osimertinib, in this study, we tend to delineate the design, synthesis, in vitro biological analysis of a series of novel reversible selective T790M inhibitors with minimal cardiotoxicity. Amongst the virtually sorted compounds; compound 18 and 74 have been located to be the foremost active compounds of the series with IC50 value of 0.88, 0.92?μM in cellular assay and 0.56, 0.62?μM in enzymatic assay, against double mutant L858R/T790M EGFR. Additionally, they showed much less affinity toward wild-type (WT)-EGFR with minimal cardiotoxicity.  相似文献   
7.
Doxorubicin (Dox) is an anthracycline antibiotic that has been used to treat different cancers. Dox-induced cardiotoxicity is common in clinical practice, while its mechanism is unknown. It has been proved that lncRNA FOXC2-AS1 may promote doxorubicin resistance and WNT1-inducible signaling pathway protein-1 (WISP1) blocks doxorubicin-induced cardiomyocyte death. Our study aimed to investigate the involvement of lncRNA FOXC2-AS1 and WISP1 in doxorubicin-induced cardiotoxicity and to explore their interactions. In our study we observed that FOXC2-AS1 and WISP1 mRNA were downregulated in heart tissues of mice with Dox-induced cardiotoxicity. FOXC2-AS1 and WISP1 mRNA expression were positively correlated in mice with Dox-induced cardiotoxicity but not in healthy mice. Overexpression of FOXC2-AS1 promoted to viability of mice cardiomyocytes under Dox treatment and also increased the expression level of WISP1. In contrast, WISP1 overexpression showed no significant effect on FOXC2-AS1. We therefore conclude that lncRNA FOXC2-AS1 may upregulate WISP1 to protect cardiomyocytes from doxorubicin-induced cardiotoxicity.  相似文献   
8.
The MEKK3/MEK5/ERK5 signaling axis is required for cardiovascular development in vivo. We analyzed the physiological role of ERK5 in cardiac endothelial cells and the consequence of activation of this kinase by the statin class of HMG Co‐A reductase inhibitor drugs. We utilized human cardiac microvascular endothelial cells (HCMECs) and altered ERK5 expression using siRNA mediated gene silencing or overexpression of constitutively active MEK5 and ERK5 to reveal a role for ERK5 in regulating endothelial tight junction formation and cell permeability. Statin treatment of HCMECs stimulated activation of ERK5 and translocation to the plasma membrane resulting in co‐localization with the tight junction protein ZO‐1 and a concomitant reduction in endothelial cell permeability. Statin mediated activation of ERK5 was a consequence of reduced isoprenoid synthesis following HMG Co‐A reductase inhibition. Statin pretreatment could overcome the effect of doxorubicin in reducing endothelial tight junction formation and prevent increased permeability. Our data provide the first evidence for the role of ERK5 in regulating endothelial tight junction formation and endothelial cell permeability. Statin mediated ERK5 activation and the resulting decrease in cardiac endothelial cell permeability may contribute to the cardioprotective effects of statins in reducing doxorubicin‐induced cardiotoxicity.  相似文献   
9.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   
10.
The effects of two sulfhydryl compounds, glutathione (GSH) and N-acetylcysteine (NAC), on the cardiotoxicity of doxorubicin (DXR) were tested on in vitro and in vivo models. DXR was administered to rats as 4 weekly i.v. doses of 3mg/kg. GSH (1.5 mmoles/kg), given i.v. 10 min before and 1 hr after DXR, was found to prevent the development of the delayed cardiotoxic effects of DXR, as assessed by electrocardiographic and mechanical parameters, as well as by histological examination of left ventricular preparations. In contrast, equimolar oral doses of NAC (1 hr before and 2hrs after DXR) were found to be ineffective. Both GSH and NAC prevented the negative inotropic effect produced by DXR on isolated rat atria. A good correlation exists between the cardioprotective effects of the two agents and their ability to enhance the non-protein sulfhydryl group content of the myocardium. Differences observed in vivo between GSH and NAC might be accounted for by pharmacokinetic factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号