首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6679篇
  免费   421篇
  国内免费   156篇
  2023年   81篇
  2022年   75篇
  2021年   151篇
  2020年   179篇
  2019年   239篇
  2018年   217篇
  2017年   133篇
  2016年   158篇
  2015年   217篇
  2014年   359篇
  2013年   442篇
  2012年   205篇
  2011年   301篇
  2010年   238篇
  2009年   263篇
  2008年   325篇
  2007年   291篇
  2006年   310篇
  2005年   258篇
  2004年   259篇
  2003年   232篇
  2002年   221篇
  2001年   124篇
  2000年   135篇
  1999年   156篇
  1998年   120篇
  1997年   115篇
  1996年   88篇
  1995年   107篇
  1994年   108篇
  1993年   86篇
  1992年   102篇
  1991年   68篇
  1990年   63篇
  1989年   78篇
  1988年   62篇
  1987年   58篇
  1986年   57篇
  1985年   58篇
  1984年   84篇
  1983年   56篇
  1982年   63篇
  1981年   56篇
  1980年   59篇
  1979年   48篇
  1978年   36篇
  1977年   27篇
  1976年   20篇
  1973年   14篇
  1972年   14篇
排序方式: 共有7256条查询结果,搜索用时 15 毫秒
1.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
2.
Summary The location, number and size of the motoneurons innervating the ischiocavernosus muscle, identified by means of horseradish-peroxidase (HRP) retrograde transport, were studied (1) in adult untreated male rats, (2) in adult male rats castrated before puberty, and (3) in adult male rats castrated before puberty and injected with testosterone from the day of castration. After injection of HRP into the ischiocavernosus muscle, labeled motoneurons were found in the dorsolateral and dorsomedial columns of the lamina IX, at the level of L6 and S1 segments of the spinal cord. Morphometric analysis demonstrated that prepubertal castration induces a statistically significant reduction in the somatic and nuclear areas (40% and 35%, respectively, if compared to those of the control rats) of both the dorsolateral and dorsomedial motoneurons, but does not affect their number. The effects of castration are prevented by exogenous testosterone.Preliminary results were presented at the International Conference on Hormones, Brain and Behaviour, Liège, Belgium, August, 1989  相似文献   
3.
4.
5.
《Developmental cell》2023,58(15):1383-1398.e6
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   
6.
7.
MicroRNAs (miRNAs) encoded by the myosin heavy chain (MHC) genes are muscle‐specific miRNAs (myomiRs) and regulate the expression of MHC isoforms in skeletal muscle. These miRNAs have been implicated in muscle fibre types and their characteristics by affecting the heterogeneity of myosin. In pigs, miR‐208b and miR‐499 are embedded in introns of MYH7 and MYH7b respectively. Here, we identified a novel single nucleotide polymorphism (SNP) in intron 30 of MYH7 by which porcine miR‐208b is encoded. Based on the association study using a total of 487 pigs including Berkshire (= 164), Landrace (= 121) and Yorkshire (= 202), the miR‐208b SNP (g.17104G>A) had significant effects on the proportions of types I and IIb fibre numbers (< 0.010) among muscle fibre characteristics and on drip loss (= 0.012) in meat quality traits. Moreover, the SNP affected the processing of primary miR‐208b into precursor miR‐208b with a marginal trend towards significance (= 0.053), thereby leading to significant changes in the levels of mature miR‐208b (= 0.009). These SNP‐dependent changes in mature miR‐208b levels were negatively correlated with the expression levels of its target gene, SOX‐6 (= 0.038), and positively associated with the expression levels of its host gene, MYH7 (= 0.046). Taken together, our data suggest that the porcine miR‐208b SNP differentially represses the expression of SOX‐6 by regulating miRNA biogenesis, thereby affecting the expression of MYH7 and the traits of muscle fibre characteristics and meat quality.  相似文献   
8.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   
9.
10.
Summary The ability of myogenic cells to migrate perpendicular to the long axis of freely autografted muscles was examined. Rat extensor digitorum longus muscles were divided, and one half was devitalized by repeated freezing in liquid nitrogen while the other half was kept viable in physiologic saline. The halves were reunited with sutures and grafted back into the original muscle bed. At intervals between 5 and 25 days the grafts were removed and examined histologically for the presence of myotubes within the devitalized region. Myotubes were first seen in the devitalized half 10 days postgrafting with the maximum number of myotubes observed after 12 to 15 days. These results indicate that myogenic cells are capable of migration perpendicular to the long axis of the muscle fibers in an autograft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号