首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  国内免费   1篇
  完全免费   16篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   4篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   16篇
  2007年   9篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有161条查询结果,搜索用时 296 毫秒
1.
Er,Cr:YSGG激光处理正常及龋坏牙本质的扫描电镜观察   总被引:12,自引:2,他引:10  
目的:利用扫描电镜观察Er,Cr:YSGG激光处理龋坏牙本质的形态学改变,并与常规方法进行比较。方法:将24颗新拔除的患龋牙随机分成2组,每组12颗牙。第1组常规处理组:分别用金刚砂石针、碳钢裂钻和挖器处理正常及龋坏牙本质;第2组激光处理组:分别用2WEr,Cr:YSGG激光、4WEr,Cr:YSGG激光处理正常及龋坏牙本质。常规制片,扫描电镜下观察。结果:与常规方法相比,激光处理后的牙本质表面不平,呈鱼鳞状、片状的粗糙外观;表面清洁,无玷污层,牙本质小管口清晰可见;4W激光作用时偶见微裂;激光处理后的牙本质表面具有增加树脂黏结性的形态学改变.结论:Er,Cr:YSGG激光能有效地清除龋坏牙本质及玷污层,并可使牙体组织发生一定的形态学改变。因此,Er,Cr:YSGG激光能够替代常规去龋备洞方法。  相似文献
2.
In an organ culture system under a three-dimensional microenvironment that provides the conditions needed for odontoblast differentiation, a row of odontoblasts can be induced (Kikuchi et al. 1996, 2001). Therefore, in a newly designed three-dimensional cell culture system that fulfils the conditions necessary for odontoblast differentiation (Kikuchi et al. 2002), we examined whether dental papilla cells in rat mandibular incisors could differentiate into tubular dentine-forming cells. In our previously established organ culture system, CM-Dil-labeled cells that were microinjected into isolated dental papillae were replaced by a row of odontoblasts. In a three-dimensional cell culture system, which consists of two kinds of type I collagen in the upper layer over multi-layered cells seeded onto collagen containing Matrigel in the lower layer and which acts as a structural meshwork, dental papilla cells were incubated as multi-layered cells in an artificial extracellular matrix (ECM). The cells aggregated to form a cell mass and invaginated as a cell mass into the ECM. The cells also extended fine fibrillar processes into the ECM. With regard to invagination, the proteolytic activities of matrix metalloproteinase-2 (MMP-2)/membrane type 1-matrix metalloproteinase (MT 1-MMP) were observed on the outer multi-layers of cells within a cell mass adjacent to the ECM. The cell mass progressively shrank to about one-half to one-third of its original diameter and was organized as a tissue surrounded by a newly secreted ECM, like dental pulp-dentine. The cells adjacent to the secreted ECM were constructed as a row of polarized columnar cells. They extended slender processes into the new ECM, which is characteristic of tubular matrix. Dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP 1) genes, which are specific for odontoblast differentiation, were expressed in an aggregated cell mass where tubular matrix-forming cells were induced. Furthermore, the tubular matrix became mineralized under prolonged culture. These results imply that the putative progenitor cells/stem cells residing in dental papillae can differentiate into odontoblasts under appropriate conditions in vitro.  相似文献
3.
Recent studies have documented that TGF-beta1 takes part in dental pulp tissue repair. Moreover, dental pulp cells have the potential to differentiate into odontoblast-like cells and produce reparative dentine in this process. However, the molecular mechanisms and potential interactions between TGF-beta1 and dental pulp cells are not clear due to the complexity of the pulp/dentine microenvironment. In this study, we investigated the induction of TGF-beta1 on the dental pulp cells in cell culture, tissue culture and three-dimensional culture patterns. These results demonstrated that TGF-beta1 significantly increased the proliferation of cells and activity of ALPase. Dental pulp cells cultured in the presence of TGF-beta1 formed mineralization nodules. In the organ culture, dental pulp cells treated with TGF-beta1 differentiated into odontoblast-like cells and formed a pulp-dentinal complex; and TGF-beta1 significantly induced synthesis of dentine relative proteins DSPP, DMP-1. The dental pulp cells share some characteristics of the odontoblast, such as a parallel arrangement with columnar form and a unilateral cell process. Together, these data indicate that TGF-beta1 can make dental pulp cells differentiated into odontoblast-like cells and form the pulp-dentinal complex. Moreover, these results suggest that TGF-beta1 is an important regulatory factor in odontoblast differentiation during tooth development and pulp repair.  相似文献
4.
Dentin collagen fibrils were studied in situ by atomic force microscopy (AFM). New data on size distribution and the axial repeat distance of hydrated and dehydrated collagen type I fibrils are presented. Polished dentin disks from third molars were partially demineralized with citric acid, leaving proteins and the collagen matrix. At this stage collagen fibrils were not resolved by AFM, but after exposure to NaOCl(aq) for 100-240 s, and presumably due to the removal of noncollagenous proteins, individual collagen fibrils and the fibril network of dentin connected to the mineralized substrate were revealed. High-aspect-ratio silicon tips in tapping mode were used to image the soft fibril network. Hydrated fibrils showed three distinct groups of diameters: 100, 91, and 83 nm and a narrow distribution of the axial repeat distance at 67 nm. Dehydration resulted in a broad distribution of the fibril diameters between 75 and 105 nm and a division of the axial repeat distance into three groups at 67, 62, and 57 nm. Subfibrillar features (4 nm) were observed on hydrated and dehydrated fibrils. The gap depth between the thick and thin repeating segments of the fibrils varied from 3 to 7 nm. Phase mode revealed mineral particles on the transition from the gap to the overlap zone of the fibrils. This method appears to be a powerful tool for the analysis of fibrillar collagen structures in calcified tissues and may aid in understanding the differences in collagen affected by chemical treatments or by diseases.  相似文献
5.
Summary In this study, the progenitor cells isolated from the human dental pulp were used to study the effects of ethylenediaminetetraacetic acid-soluble dentin extract (DE) on their differentiation and mineralization to better understand tissue injury and repair in the tooth. Mineralization of the matrix was increasingly evident at 14, 21, and 28 d after treatment with a mineralization supplement (MS) (ascorbic acid [AA], β-glycerophosphate [β-GP]) and MS+DE. Real-time polymerase chain reaction results showed type I collagen upregulation after the addition of MS+DE at 7 d. Alkaline phosphatase was downregulated after the mineralization became obvious at 14 d. Bone sialoprotein was shown to be upregulated in the mineralized cell groups at all time points and dentin sialophosphoprotein after 7 d. Core binding factor a 1 was upregulated by the treatment of MS and DE at 7, 14, and 21 d. These results indicated that the MS of AA, β-GP, and DE synergistically induced cell differentiation of pulp progenitor cells into odontoblast-like cells and induced in vitro mineralization.  相似文献
6.
7.
We recently identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene induced in adventitial fibroblasts after arterial injury. Cthrc1 is a 30 kDa secreted protein that has the ability to inhibit collagen matrix synthesis. Cthrc1 is also glycosylated and retains a signal sequence consistent with the presence of Cthrc1 in the extracellular space. In injured arteries and skin wounds, we have found Cthrc1 expression to be associated with myofibroblasts and sites of collagen matrix deposition. Furthermore, we demonstrated that Cthrc1 inhibits collagen matrix deposition in vitro. Using in situ hybridization and immunohistochemistry, we characterized the expression domains of Cthrc1 during murine embryonic development and in postnatal tissues. In mouse embryos, Cthrc1 was expressed in the visceral endoderm, notochord, neural tube, developing kidney, and heart. Abundant expression of Cthrc1 was observed in the developing skeleton, i.e., in cartilage primordia, in growth plate cartilage with exclusion of the hypertrophic zone, in the bone matrix and periostium. Bones from adults showed expression of Cthrc1 only in the bone matrix and periostium while the articular cartilage lacked expression. Cthrc1 is typically expressed at epithelial-mesenchymal interfaces that include the epidermis and dermis, basal corneal epithelium, airway epithelium, esophagus epithelium, choroid plexus epithelium, and meninges. In the adult kidney, collecting ducts and distal tubuli expressed Cthrc1. Collectively, the sites of Cthrc1 expression overlap considerably with those reported for TGF-beta family members and interstitial collagens. The present study provides useful information towards the understanding of potential Cthrc1 functions.  相似文献
8.
Experimental periodontal regeneration studies have revealed the weak binding of repair cementum to the root surface, whereas attachment of cementum to dentin preconditioned by odontoclasts appears to be superior. The aim of this study has been, therefore, to analyze the structural and partial biochemical nature of the interface that develops between resorbed dentin and repair cementum by using human deciduous teeth as a model. Aldehyde-fixed and decalcified tooth samples were embedded in acrylic or epoxy resins and sectioned for light and transmission electron microscopy. Antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two noncollagenous proteins accumulating at hard tissue interfaces in bone and teeth, were used for protein A-gold immunocytochemistry. Light microscopy revealed a gradually increasing staining intensity of the external dentin matrix starting after the withdrawal of the odontoclast. Labeling for both BSP and OPN was first detected among the exposed collagen fibrils and in the intratubular dentin matrix when odontoclasts had withdrawn but mesenchymal cells were present. Subsequently, collagen fibrils of the repair cementum were deposited concomitantly with the appearance of labeling for BSP and OPN over the intratubular, intertubular, and peritubular dentin matrix. Labeled mineralization foci indicated the advancing mineralization front, and the collagenous repair matrix became integrated in an electron-dense organic material that showed labeling for BSP and OPN. Thus, no distinct planar interfacial matrix layer lies between the resorbed dentin and the repair cementum. The results suggest that odontoclasts precondition the dentin matrix such that the repair cementum becomes firmly attached.This study was supported by the Clinical Research Foundation (CRF) for the Promotion of Oral Health, University of Berne, Berne, Switzerland.  相似文献
9.
Dentin matrix protein 1 (DMP 1) is an acidic phosphoprotein that has been postulated to play an important role in mineralized tissue formation. We have examined rat molar tooth germs by applying a high-resolution immunocytochemical approach with the purpose to identify the temporal and spatial localization of DMP 1 at the onset of dentinogenesis. Upper molar tooth germs of 2- to 3-day-old Wistar rats were fixed in a cacodylate-buffered 0.1% glutaraldehyde + 4% formaldehyde fixative, left unosmicated and embedded in LR White resin. The sections were incubated with a polyclonal DMP 1 antibody for postembedding colloidal gold immunolabeling and examined in a Jeol 1010 transmission electron microscope. The earliest localization of DMP 1 was in the Golgi region as well as in the nucleus of differentiating odontoblasts. When mineralization spread from matrix vesicles to the surrounding matrix, DMP 1 was extracellularly detected around the mineralizing globules. In the regions of fully mineralized mantle dentin, it was present in the mineralized regions, mainly around the peritubular dentin. The appearance of DMP 1 during early dentinogenesis implies a direct role for this protein in both odontoblast differentiation and matrix mineralization.  相似文献
10.
To elucidate the roles of proteoglycans (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGs), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the initial cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal junction were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号