首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1989年   5篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
Alterations in neostriatal dopamine metabolism, release, and biosynthesis were determined 3, 5, or 18 days following partial, unilateral destruction of the rat nigrostriatal dopamine projection. Concentrations of dopamine and each of its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were markedly decreased in the lesioned striata at 3, 5, or 18 days postoperation. The decline in striatal high-affinity [3H]dopamine uptake closely matched the depletion of dopamine at 3 and 18 days postoperation. However, neither DOPAC, HVA, nor 3-MT concentrations were decreased to as great an extent as dopamine at any time following lesions that depleted the dopamine innervation of the striatum by greater than 80%. In these more severely lesioned animals, dopamine metabolism, estimated from the ratio of DOPAC or HVA to dopamine, was increased two- to four-fold in the injured hemisphere compared with the intact hemisphere. Dopamine release, estimated by the ratio of 3-MT to dopamine, was more increased, by five- to sixfold. Importantly, the HVA/dopamine, DOPAC/dopamine, and 3-MT/dopamine ratios did not differ between 3 and 18 days postlesioning. The rate of in vivo dopamine biosynthesis, as estimated by striatal DOPA accumulation following 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibition with NSD 1015, was increased by 2.6- to 2.7-fold in the surviving dopamine terminals but again equally at 3 and 18 days postoperation. Thus, maximal increases in dopamine metabolism, release, and biosynthesis occur rapidly within neostriatal terminals that survive a lesion. This mobilization of dopaminergic function could contribute to the recovery from the behavioral deficits of partial denervation by increasing the availability of dopamine to neostriatal dopamine receptors. However, these presynaptic compensations are not sufficient to account for the protracted (at least 3-week) time course of sensorimotor recovery that has been observed following partial nigrostriatal lesion.  相似文献   
2.
Summary The singing muscles of the katydid Neoconocephalus robustus develop adult ultrastructure late in the last nymphal instar and during the first few days of adult life. The ultrastructural changes during early adulthood were not affected by unilateral axotomy shortly after the adult molt. Both denervated and innervated muscles developed adult proportions of mitochondria, myofibril, and sarcoplasmic reticulum and transverse tubules.  相似文献   
3.
Summary The relationship between the size and shape of regenerative outgrowth and the quantity of innervation was studied in adult Xenopus laevis. The forelimbs, of which the nerve supply was artificially altered, were amputated midway through the stylopodium and were kept for 1 year. The regenerative outgrowths that formed in normal limbs with an intact nerve supply were mainly spike-shaped and occasionally rod-shaped. However, when the nerve supply to the distal part of the forelimb was augmented by surgically diverting ipsilateral sciatic nerve bundles, the quantity of innervation was increased to about two and a half times that of the normal limb. These hyperinnervated outgrowths were somewhat larger than those of the normally innervated outgrowths and the majority of them were oar-shaped, a type hardly ever encountered in normal regeneration. In contrast, when partial denervation was performed concomitantly with limb amputation, by ablation of the N. radialis at the shoulder joint, the quantity of innervation decreased to about one half that of the normal limb. The outgrowths obtained were spike-shaped in all cases, with their size being about half that of the normally innervated outgrowths. Furthermore, when both the N. radialis and N. ulnaris were ablated in the same way, the amputated limbs were mostly non-regenerative, but some of them regenerated small conical outgrowths. Based on these results, a discussion is presented concerning the relationship between a regenerative outgrowth and the innervation of the forelimb in Xenopus.  相似文献   
4.
The objective of this investigation was to study the morphometry of the epithelial mucosa in the chronic phase ofT. cruzi infection. Nine young female Wistar rats were inoculated withT. cruzi. Ten months after inoculation the animals were sacrificed and the proximal colon was collected for morphometric measurements of the thickness of the muscle layers, the number of neurons in the myenteric plexus, the crypt cell population (CCP), crypt cell production per crypt (CCPC) and turnover time (TT) of the epithelium. There was no muscle layer hypertrophy but there was significant denervation in the group inoculated withT. cruzi, which also showed hyperplasia of the epithelium. The data suggest that denervation of the myenteric plexus did not induce hypertrophy of the propria muscle layer itself but altered the morphometry of the colonic epithelium inT. crwzi-infected animals, with increased development of CCP and TT. It is possible that this epithelial hyperplasia, as a consequence of a longer crypt cell TT, increased the absorption and secretion activities of the colon, which in turn may participate in the genesis of the enteromegalies observed in the chronic phase of Chagas’ Disease.  相似文献   
5.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   
6.
Summary A proteoglycan-specific antiserum has been used to monitor the effects of denervation in the electric organ of Torpedo marmorata. The antiserum was produced by injecting a highly purified synaptic vesicle fraction prepared from the electric organs of Torpedo marmorata. Following absorption the serum appears to be specific towards synaptic vesicles. The ultrastructural localization of the antigen determined by immuno-electron microscopy confirmed the specificity of the antiserum and showed that it did not crossreact with the proteoglycans of the basal lamina. The rate of disappearance of the vesicle proteoglycans following denervation was evaluated by means of the antiserum and was compared to the rate of disappearance of other vesicular and nerve terminal-associated markers. The results suggest that degeneration affects the vesicular constituents at varying rates resulting in a progressive disappearance of the entire functional capacity of the synaptic vesicles.  相似文献   
7.
Abstract: Acetylcholinesterase (AChE) was extracted in a high-saline medium from gastrocnemius muscles of rat embryos and young rats aged 14 days'gestation to 40 days post partum. The molecular forms of the enzyme were separated by low-salt precipitation, followed by velocity sedimentation. During gestation, all molecular forms increased in activity, particularly the 16 S (A12) form. During the first 2 weeks of life, there was a large increase in the activity of soluble AChE (G forms), whilst the activity of insoluble AChE (A forms) was reduced. Denervation of the muscle reversed the change in the relative proportions of the molecular forms. The embryonic pattern of activities of AChE forms persisted in cultures of myotubes obtained at 20 days'gestation and maintained in the absence of spinal cord. When myotubes were maintained in medium previously conditioned by developing spinal cord explants, 16 S AChE declined while the soluble (4 and 6 S) forms increased in activity in a manner resembling that seen in early postnatal muscles in vivo . β-Endorphin (β-EP) immunoreactivity was detected in the spinal cord-conditioned medium and was identified by HPLC and ion-exchange chromatography as β-EP-(l–31) plus its shortened and N -acetylated forms. Cultivation of myotubes in the presence of synthetic camel β-EP resulted in a reversible change in the pattern of AChE forms which was similar to that seen with spinal cord-conditioned medium. These studies provide evidence for the neuroregulation of AChE A and G forms in immature skeletal muscle. A major candidate for this role is β-EP, produced and released by developing spinal cord.  相似文献   
8.
We measured the distribution of molecular forms of acetylcholinesterase (AChE) in muscles of a song bird, the zebra finch, and found a pattern similar to those reported in other vertebrates. As in other species, the most rapidly sedimenting form of the enzyme decreases to barely detectable levels following denervation. In the muscles of the syrinx, castration causes a large decrease in AChE activity, but has little or no effect on the relative abundance of AChE forms. This suggests that the number of AChE catalytic sites is changing without affecting the distribution of catalytic sites among the molecular forms. This is in marked contrast with the effect of denervation in the syrinx, which causes changes in the distribution of activity, as well as in total activity.  相似文献   
9.
We found atrial natriuretic peptide (ANP), known as a humoral factor in regulating body fluid volume and blood pressure, in considerable quantities in rat superior cervical sympathetic ganglion (SCG) by radioimmunoassay after separation with reverse-phase HPLC. Although the ANP content of the immature rat 1 week after birth was low, it doubled at 2 weeks and then increased gradually, until it reached the adult level. Denervation caused a rapid decrease in the ANP content to half of the intact SCG level after 3 h, which then fell to 10% of the control value on day 2 after operation. The time course of ANP content reduction after denervation was similar but rather faster than that of activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, an observation suggesting that ANP may partly contribute to cholinergic synaptic transmission. On the other hand, axotomy produced a rather slower decrease in the ANP content than did denervation. Enucleation and sialoadenectomy also caused a considerable reduction of the ANP content. Thus, part of the ANP found in the ganglion is apparently transported from sympathetically innervated extraganglionic organs via retrograde axoplasmic flow.  相似文献   
10.
去神经对快,慢肌纤维肌球蛋白ATPase影响的组织化学观察   总被引:2,自引:0,他引:2  
本文用组织化学方法观察了豚鼠比目鱼肌(SOL)和腓骨第三肌(PT)在去神经后其快、慢纤维肌球蛋白ATPase特性的变化。在正常肌肉中Ⅰ型(慢)纤维和Ⅱ型(快)纤维分别具有酸和碱稳定ATPase活性。慢纤维在去神经后出现了碱稳定ATPase活性,而快纤维则无明显变化。结果表明,只有慢纤维的肌球蛋白ATPase特性才与神经支配有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号