首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   76篇
  国内免费   175篇
  2024年   1篇
  2023年   21篇
  2022年   20篇
  2021年   29篇
  2020年   27篇
  2019年   41篇
  2018年   29篇
  2017年   30篇
  2016年   23篇
  2015年   55篇
  2014年   117篇
  2013年   140篇
  2012年   147篇
  2011年   147篇
  2010年   105篇
  2009年   35篇
  2008年   26篇
  2007年   40篇
  2006年   39篇
  2005年   33篇
  2004年   36篇
  2003年   28篇
  2002年   34篇
  2001年   26篇
  2000年   8篇
  1999年   16篇
  1998年   13篇
  1997年   11篇
  1996年   6篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1364条查询结果,搜索用时 31 毫秒
1.
辽宁省菜田生态系统组分优势值与系统优势度分析   总被引:2,自引:1,他引:1  
辽宁省菜田生态系统组分优势值与系统优势度分析周宝利,葛晓光李宁义(沈阳农业大学园艺系,110161)(沈阳市城建中专,110013)AnalysisonSuperiorityValueandDominanceDegreeofVariousCompon...  相似文献   
2.
3.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
4.
Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.  相似文献   
5.
Astiban produced structural damage in male Schistosoma mansoni (Puerto Rican strain) in mice. The degree of disorganization was directly related to the dosage administered, although initial changes in structure for the first three doses (3 × 30–40 mg/kg) varied between individual worms of the same infection. More consistent damage to the tegument, parenchyma, and reproductive organs occurred after 6 × 40 mg/kg of Astiban injections. Exposure of the subtegumentary musculature preceded appearance of an increased number of noncytoplasmic spaces in various tissues, probably a result of osmotic stress. Testicular disorganization was prominent initially in spermatozoa and spermatids, but became more generalized with drug accumulation. The sustentacular cells showed increased phagocytic activity with testicular damage. Continuous administration of drug resulted in a general distortion of the worm's morphology. However, partial recovery occurred within 22 days following cessation of drug administration.  相似文献   
6.
7.
8.
The emerging link between iron metabolism and genome integrity is increasingly clear. Recent studies have revealed that MMS19 and cytosolic iron-sulfur cluster assembly (CIA) factors form a complex and have central roles in CIA pathway. However, the composition of the CIA complex, particularly the involvement of the Fe-S protein IOP1, is still unclear. The roles of each component are also largely unknown. Here, we show that MMS19, MIP18, and CIAO1 form a tight “core” complex and that IOP1 is an “external” component of this complex. Although IOP1 and the core complex form a complex both in vivo and in vitro, IOP1 behaves differently in vivo. A deficiency in any core component leads to down-regulation of all of the components. In contrast, IOP1 knockdown does not affect the level of any core component. In MMS19-overproducing cells, other core components are also up-regulated, but the protein level of IOP1 remains unchanged. IOP1 behaves like a target protein in the CIA reaction, like other Fe-S helicases, and the core complex may participate in the maturation process of IOP1. Alternatively, the core complex may catch and hold IOP1 when it becomes mature to prevent its degradation. In any case, IOP1 functions in the MMS19-dependent CIA pathway. We also reveal that MMS19 interacts with target proteins. MIP18 has a role to bridge MMS19 and CIAO1. CIAO1 also binds IOP1. Based on our in vivo and in vitro data, new models of the CIA machinery are proposed.  相似文献   
9.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
10.
Ecological processes that can realistically account for network architectures are central to our understanding of how species assemble and function in ecosystems. Consumer species are constantly selecting and adjusting which resource species are to be exploited in an antagonistic network. Here we incorporate a hybrid behavioural rule of adaptive interaction switching and random drift into a bipartite network model. Predictions are insensitive to the model parameters and the initial network structures, and agree extremely well with the observed levels of modularity, nestedness and node-degree distributions for 61 real networks. Evolutionary and community assemblage histories only indirectly affect network structure by defining the size and complexity of ecological networks, whereas adaptive interaction switching and random drift carve out the details of network architecture at the faster ecological time scale. The hybrid behavioural rule of both adaptation and drift could well be the key processes for structure emergence in real ecological networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号