首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   11篇
  国内免费   9篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   12篇
  2019年   16篇
  2018年   15篇
  2017年   19篇
  2016年   9篇
  2015年   17篇
  2014年   39篇
  2013年   68篇
  2012年   44篇
  2011年   78篇
  2010年   54篇
  2009年   45篇
  2008年   52篇
  2007年   52篇
  2006年   56篇
  2005年   48篇
  2004年   45篇
  2003年   42篇
  2002年   33篇
  2001年   17篇
  2000年   24篇
  1999年   9篇
  1998年   16篇
  1997年   11篇
  1996年   27篇
  1995年   20篇
  1994年   11篇
  1993年   6篇
  1992年   13篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   10篇
  1983年   7篇
  1982年   11篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有997条查询结果,搜索用时 71 毫秒
1.
Abstract: In this study we examined the effect on oligodendroglial survival of exogenous cystine deprivation. Oligodendroglia isolated from mixed glial primary cultures derived from brains of 1-day-old rats, and then grown for 3 days, were markedly dependent on extracellular cystine for survival. The EC50 values for cystine for a 24-h exposure ranged from 2 to 65 µ M . After 6 h of cystine deprivation, the cellular glutathione level decreased to 21 ± 13% of the control. Free radical scavengers (α-tocopherol, ascorbate, idebenone, and N-tert -butyl-α-phenylnitrone) were protective against cystine deprivation but had no effect on the glutathione level. An iron chelator, desferrioxamine mesylate, also was protective. These findings suggest that intracellular hydroxyl radicals are important for this toxicity. In contrast to the observations in 3-day-old cultures, the dependence on exogenous cystine for cell viability was not observed consistently in oligodendroglia cultured for 6 days before the onset of cystine deprivation. Several observations suggested that this loss of cystine dependence was due to a diffusible factor. Sensitivity to the toxicity of cystine deprivation in day 6 cultures increased as the volume of medium was increased from 0.3 to 2 ml. Furthermore, preincubation of cystine-depleted medium with astrocyte cultures eliminated the toxicity of the cystine deprivation. HPLC assay of the conditioned cystine-depleted medium showed no significant change in cystine or cysteine concentration. We conclude that oligodendroglia are highly susceptible to cystine deprivation in day 3 cultures and that this susceptibility is due to the accumulation of intracellular free radicals in the setting of glutathione depletion. The resistance of day 6 oligodendroglial cultures is caused at least in part by a diffusible factor.  相似文献   
2.
3.
Summary Monospecific antibody directed to cysteine protease of 2-day-old rat epidermis recently characterized as being different from the proteases previously reported was produced in rabbits. By immunofluorescence microscopy and immunoperoxidase staining with an avidin-biotin-peroxidase method the protease was found to be present in the epidermis of rodents of different ages as well as that of humans, but not in the dermis. The staining in germinative cells was more intense than in cells in the superficial layers. It appeared as irregular patches in the nuclei and stained more diffusely in the cytoplasm where small granular components, strongly stained, were identified. The staining patterns in granular cells showed accumulation of the antigen in a granular form. The morphology and distribution of granules resembled those of keratohyalin-like granules in the nucleus and dense homogenous deposits in the cytoplasm. In cornified cells the reaction product was localized by the plasma membrane where concentration of the dense homogenous deposits occurred, suggesting that the cysteine protease is one component of the unique and characteristic structure of differentiated keratinocytes. In addition, the cysteine protease antigen having the same molecular weight as the epidermal enzyme was detected in liver, kidney and lung indicating a wider tissue distribution of the protease. The significance of the protease in regulation of cellular functions remains to be investigated.  相似文献   
4.
5.
Aberrant activation of calpain has been observed in various pathophysiological disorders including neurodegenerative diseases such as Alzheimer’s Disease. Here we describe our efforts on ketoamide-based 1-benzyl-5-oxopyrrolidine-2-carboxamides as a novel series of highly selective calpain inhibitors mitigating the metabolic liability of carbonyl reduction. The most advanced compound from this new series, namely A-1212805 (ABT-957, Alicapistat) proceeded to clinical phase I studies.  相似文献   
6.
Controlled generation of reactive oxygen species orchestrates numerous physiological signaling events (Finkel, T. (2011) Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15). A major cellular target of reactive oxygen species is the thiol side chain (RSH) of Cys, which may assume a wide range of oxidation states (i.e. −2 to +4). Within this context, Cys sulfenic (Cys-SOH) and sulfinic (Cys-SO2H) acids have emerged as important mechanisms for regulation of protein function. Although this area has been under investigation for over a decade, the scope and biological role of sulfenic/sulfinic acid modifications have been recently expanded with the introduction of new tools for monitoring cysteine oxidation in vitro and directly in cells. This minireview discusses selected recent examples of protein sulfenylation and sulfinylation from the literature, highlighting the role of these post-translational modifications in cell signaling.  相似文献   
7.
Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC. First, electrophilic fragments were screened against BoNT/A LC, and benzoquinone (BQ) derivatives were found to be active. In kinetic studies, BQ compounds acted as irreversible inhibitors that presumably covalently modify cysteine 165 of BoNT/A LC. Although most BQ derivatives were highly reactive toward glutathione in vitro, a few compounds such as natural product naphthazarin displayed low thiol reactivity and good BoNT/A inhibition. In order to increase the potency of the BQ fragment, computational docking studies were employed to elucidate a scaffold that could bind to sites adjacent to Cys165 while positioning a BQ fragment at Cys165 for covalent modification; 2-amino-N-arylacetamides met these criteria and when linked to BQ displayed at least a 20-fold increase in activity to low μM IC50 values. Unlike BQ alone, the linked-BQ compounds demonstrated only weak irreversible inhibition and therefore acted mainly as non-covalent inhibitors. Further kinetic studies revealed a mutual exclusivity of BQ covalent inactivation and competitive inhibitor binding to sites adjacent to Cys165, refuting the viability of the current strategy for developing more potent irreversible BoNT/A inhibitors. The highlights of this study include the discovery of BQ compounds as irreversible BoNT/A inhibitors and the rational design of low μM IC50 competitive inhibitors that depend on the BQ moiety for activity.  相似文献   
8.
Targeted covalent inhibitors of urease were developed on the basis of the catechol structure. Forty amide and ester derivatives of 3,4-dihydroxyphenylacetic acid, caffeic acid, ferulic acid and gallic acid were obtained and screened against Sporosarcinia pasteurii urease. The most active compound, namely propargyl ester of 3,4-dihydroxyphenylacetic acid exhibited IC50?=?518?nM andkinact/Ki?=?1379?M?1?s?1. Inhibitory activity of this compound was better and toxicity lower than those obtained for the starting compound – catechol. The molecular modelling studies revealed a mode of binding consistent with structure-activity relationships.  相似文献   
9.
The development of a new class of cysteine protease inhibitors utilising the thiosulfonate moiety as an SH specific electrophile is described. This moiety has been introduced into suitable amino acid derived building blocks, which were incorporated into peptidic sequences leading to very potent i.e. sub micromolar inhibitors of the cysteine protease papain in the same range as the vinyl sulfone based inhibitor K11777. Therefore, their inhibitory effect on Schistosoma mansoni, a human blood parasite, that expresses several cysteine proteases, was evaluated. The homophenylalanine side chain containing compounds 2730 and especially 36 showed promising activities compared with K11777 and warrant further investigations of these peptidic thiosulfonate inhibitors as new potential anti-parasitic compounds.  相似文献   
10.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号