首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   382篇
  国内免费   313篇
  2024年   3篇
  2023年   42篇
  2022年   30篇
  2021年   66篇
  2020年   114篇
  2019年   135篇
  2018年   125篇
  2017年   126篇
  2016年   131篇
  2015年   121篇
  2014年   137篇
  2013年   146篇
  2012年   115篇
  2011年   110篇
  2010年   97篇
  2009年   109篇
  2008年   121篇
  2007年   124篇
  2006年   142篇
  2005年   96篇
  2004年   81篇
  2003年   103篇
  2002年   73篇
  2001年   54篇
  2000年   63篇
  1999年   43篇
  1998年   37篇
  1997年   31篇
  1996年   17篇
  1995年   22篇
  1994年   17篇
  1993年   15篇
  1992年   8篇
  1991年   12篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   9篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1972年   1篇
排序方式: 共有2733条查询结果,搜索用时 15 毫秒
1.
ABSTRACT Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ± 0.005 [x̄ ± SE]) and low (S = 0.968 ± 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.  相似文献   
2.
The evolution of parasite life histories should usually have correlated effects on host survivorship and/or reproductive success. For example, parasites that reproduce more rapidly might be expected to cause greater reductions in host fitness. Important theoretical advances have recently been made on virulence evolution, but the results are not always consistent. Here I compare two models [ Q. Rev. Biol. 71 (1996) 37 ; Q. Rev. Biol. 75 (2000) 261 ] on the evolution of virulence that get qualitatively different results with respect to the effects of coinfection. I also construct a third model that attempts to connect these two formulations. The results suggest that parasite growth rates should increase as local host competition increases, unless relatedness is at equilibrium. In addition, the qualitative effect of adding coinfections on parasite growth rates depends critically on how the number of coinfections affects transmission success.  相似文献   
3.
《Ecology letters》2018,21(1):31-42
Humans require multiple services from ecosystems, but it is largely unknown whether trade‐offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade‐offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win‐win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8‐49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.  相似文献   
4.
5.
Soil patchiness is a key feature of arid rangelands. As root proliferation contributes to soil exploration and resource uptake, it is ecologically relevant to understand how species respond to soil heterogeneity and coexist. Campbell et al.'s influential 1991 hypothesis proposes that dominant species deploy root systems (scale) that maximize soil volume explored. Instead, subordinate species show accurate root systems that exclusively proliferate in nutrient‐rich patches (precision). After many experiments under controlled conditions, the generality of this hypothesis has been questioned but a field perspective is necessary to increase realism in the conceptual framework. We worked with a guild of perennial graminoid species inside a grazing exclosure in an arid Patagonian steppe, a model system for ecological studies in arid rangelands for four decades. We buried root traps in bare ground patches with sieved soil, with or without a pulse of nitrogen addition, to measure specific root biomass and precision at 6 and 18 months after burial. We also estimated scale (root density) in naturally established plants, and root decomposition in litter bags. Several species grew in root traps. Dominant species showed the highest root biomass (in both harvests) and scale. Subordinate species grew more frequently with nitrogen addition and showed lower biomass and scale. Similar total root biomass was found with and without nitrogen addition. Species differed in root decomposition, but correcting species biomass by decomposition did not change our conclusions. We did not find a relation between scale and precision, indicating that Campbell's hypothesis is probably not supported in this Patagonian steppe. Soil resource acquisition differences probably do not utterly explain the coexistence of dominant and subordinate species because the steppe is also affected by large herbivore grazing. We propose that root proliferation in this steppe is the result of the interaction between individual density in the community and specific root growth rates.  相似文献   
6.
Ornithoptera birdwing butterflies have blue, green, or orange iridescent scales in different species or subspecies. To understand the species‐ or subspecies‐dependent scale color differences, we performed comparative morphometric analyses of iridescent scales from three closely related taxa: O. priamus priamus (green), O. priamus urvillianus (blue), and O. croesus (orange). The three types of Ornithoptera wings exhibited reversible color changes to longer wavelengths with different kinetics upon immersion in methanol, suggesting that their color differences are at least partly based on differences in the size of air cavities made by nanostructures. Cover scales of all three color types were visually semi‐transparent glass scales that exhibited color when placed on a dark background. The dorsoventral differences in coloration were observed in single scales, suggesting the optical importance of scale surfaces. Scanning electron microscopy of cover scales in cross section revealed that all color types exhibited finely sculpted tapered ridges and thick, irregular basal multilayers containing tandemly clustered granular objects and air cavities. Scale thickness, ridge height, and multilayer thickness were significantly different among the three color types, and granular object size was significantly different between orange scales and blue and green scales. We conclude that each of the three taxa of Ornithoptera butterflies possesses unique quantitative size values on tapered ridges and irregular multilayers with granular objects and air cavities to express unique structural color. These species‐ or subspecies‐dependent structural colors might have evolved via quantitative shifts in these microarchitectural traits rather than via changes in the basic developmental or architectural plan for color expression.  相似文献   
7.
8.
There is a major risk that many of the remaining semi-natural pastures in Swedish forest dominated regions will lose their grazing in the near future with lost biodiversity as a result. The reason is the high costs of grazing small pastures with cattle from generally small herds. The approaching decoupling of the present EU income support per head of cattle will increase the risk. Calculations based on economies of scale in beef production and opportunity cost of forest and arable land suggest that re-creating extensive pasture-forest mosaics consisting of existing semi-natural pastures and adjacent arable fields and forests can secure economically sustainable grazing. The risk of local extinction of grassland species due to habitat isolation is also lower in large mosaics than in small, scattered pastures.  相似文献   
9.
Disproportionately large numbers of threatened and endangered species and unusually high biodiversity occur on active and former military training areas. Although this may seem paradoxical given the apparently destructive nature of military training, an evaluation of the nature and extent of the disturbances is enlightening. Military training frequently produces heterogeneous landscapes. Large portions of military training areas remain virtually untouched, favoring disturbance‐averse species; other portions are heavily disturbed, favoring disturbance‐dependent species. The rich habitat mosaics include the two extremes as well as the continua of disturbance and succession between them, thus providing suitable habitat for a very large number of species with widely varying habitat requirements. To explain the phenomenon, a heterogeneous disturbance hypothesis is proposed which suggests that biodiversity is maximized where multiple kinds, frequencies, severities, periodicities, sizes, shapes, and/or durations of disturbance occur concomitantly on a landscape in a spatially and temporally distributed fashion. The enhanced biodiversity occurring on active and former military training areas illustrates the need for restoration ecologists to restore or maintain an appropriate heterogeneous disturbance regime when attempting to restore ecosystem function and biodiversity.  相似文献   
10.
Abstract. Plant cover was visually estimated by five observers, independent of each other, in a species‐rich grassland in the Bílé Karpaty Mts., southeastern Czech Republic, in seven plots ranging from 0.001 to 4 m2. Variation of total plant cover among the observers was high at small scales: 0.001–0.016 m2; coefficient of variation, CV = 35 to 45%, but much lower at larger scales: 0.06–4 m2; CV = 7 to 15%. Differences between visual estimates of plant cover of individual species made by different observers were affected by plot size, total cover and morphology of particular plants. CV of the cover of individual species ranged from 0 to 225% and decreased with increasing plot size. For abundant plants the CV attained ca. 50%, independent of plot size. In spite of a very high number of sterile plants with similar leaf morphology and colour, the observed variation in cover estimates in the studied grassland was comparable with results reported from other vegetation types. Differences between estimates by individual observers were often larger than usual year to year changes in undisturbed grasslands. Therefore, I suggest that to avoid difficulties in the interpretation of results based on plant cover data obtained from visual estimates, several observers should always work together, adjusting their extreme estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号