首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
排序方式: 共有68条查询结果,搜索用时 359 毫秒
1.
2.
Numerous species of estuarine and freshwater-tolerant crabs show an “export strategy”, i.e. an early larval downstream transport towards coastal marine waters, later zoeal development at higher salinities, and a return of the last larval stage, the megalopa, into estuaries or rivers. The speed and extent of the upstream migration of the megalopa through strong salinity gradients may be constrained by increasing hypo-osmotic stress. In an experimental laboratory study with Armases roberti, a freshwater-inhabiting sesarmid crab from the Caribbean region, we studied in the megalopa stage (after zoeal rearing at 25‰) the tolerance of reduced salinities.In the first experiment, the larvae were exposed directly to various constant salinities (1-25‰). For the second experiment, they were transferred stepwise to strongly diluted media (within 6 days from 25‰ to ≤ 3‰), simulating differential scenarios of upstream migration into brackish or freshwater habitats.When postmoult megalopae were exposed directly to salinities ≤ 3‰, they all died within 24 h. A slightly higher salt concentration (5‰), however, allowed for considerable survival (46%) through metamorphosis to the first juvenile crab stage. In treatments with continuous exposure to 10-15‰, as well as in a control group (25‰), survival to metamorphosis was significantly higher (83-96%), and the average duration of development was shorter compared to 5‰ (12-13 vs. 16 days). In the second experiment, with stepwise salinity reductions, gradual acclimation to decreasing osmotic pressures permitted a successful development to metamorphosis at ≤ 3‰ and even in freshwater (< 0.2‰).This strong physiological adaptability enables the megalopa of A. roberti to cross during its upstream migration, within a short time (6 days), strong osmotic gradients, so that metamorphosis is possible also in freshwater habitats where the conspecific adult crabs live. The speed of migration appears to be limited by physiological constraints related to changes in the capability for osmoregulation occurring during the course of the moulting cycle.  相似文献   
3.
A comparison of sediments and associated macrobenthos at sites sampled within 20 fish farm leases distributed across southeastern Tasmania indicated major natural changes along a regional cline. Introduced taxa were strongly represented in the fauna, comprising 45% of total macrofaunal biomass. Large differences were evident between sites affected by different levels of organic farm waste. Sites located adjacent (< 10 m) to farm cages possessed significantly depressed sediment redox levels, a dominance of capitellid and dorvilleid polychaetes, and low macrofaunal species richness. Subtle impacts extended across farm lease areas in the form of depressed redox potential at 40 mm depth and changes to the macrobenthic community, including a prevalence of the dogwhelk Nassarius nigellus and a paucity of the heart urchin Brissus sp. and the maldanid polychaetes Asychis sp. and Rhodine sp. Minor farm effects were also evident at sites sampled 35 m outside farm lease boundaries, most notably as elevated population numbers of the polychaete Terrebellides sp., bivalve Mysella donaciformis and heart urchin Echinocardium cordatum. Amongst the univariate metrics examined, redox potential at 40 mm depth and the ratio of bivalves to total molluscs provided the most sensitive indicators of farm impacts, with the latter metric relatively insensitive to spatial variation between locations within the region studied.  相似文献   
4.
The occurrence, localization and response to environmental salinity changes of Na+-K+ATPase activity were studied in each of the individual gills 4-8 of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Na+-K+ATPase activity appeared to be differentially sensitive to environmental salinity among gills. Upon an abrupt change to low salinity, a differential response of Na+-K+ATPase activity occurred in each individual gill which could suggest a differential role of this enzyme in ion transport process in the different gills of C. angulatus. With the exception of gill 8, a short-term increase of Na+-K+ATPase specific activity was observed in posterior gills, which is similar to adaptative variations of this activity described in other euryhaline crabs. However, and conversely to that described in other hyperregulating crabs, the highest increase of activity occurred in anterior gills 4 by 1 day after the change to dilute media which could suggest also a role for these gills in ion transport processes in C. angulatus. The fact that variations of Na+-K+ATPase activity in anterior and posterior gills were concomitant with the transition to hyperregulation indicate that this enzyme could be a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab. The results suggest a differential participation of branchial Na+-K+ATPase activity in ionoregulatory mechanisms of C. angulatus. The possible existence of functional differences as well as distinct regulation mechanisms operating in individual gills is discussed.  相似文献   
5.
Chitobiase is one of the enzymes involved in chitin degradation in nature. It is produced and released by a variety of organisms from bacteria to fish. In crustaceans, it is associated with digestive function and acts on the epidermis during the molting process. In the present study, the influence of water pH, temperature and salinity on maximum chitobiase activity (MCA), as well as the enzyme affinity (Km) for a substrate, the methylumbelliferyl N-acetyl-ß-d-glucosaminide (MUFNAG) was evaluated in the copepod Acartia tonsa. Km values for chitobiases of other crustaceans from the Patos Lagoon estuary and Cassino Beach (Southern Brazil) were also determined. For A. tonsa, MCA was observed at pH 5-6 and 30-35 °C. The range of pH was quite similar to that reported for other aquatic organisms. However, the range of temperature was lower than that previously reported. For salinity, no previous studies have considered the influence of this parameter on MCA. For A. tonsa, MCA was observed in freshwater, showing a significant linear decrease with increasing salinity. Considering that maximum copepod survival and growth rates are observed between 15 and 25 ppt, these findings suggest that the observed enzyme activity in this range of salinity (68 to 47% of that measured in freshwater) is not a limiting factor for A. tonsa growth. However, the extremely decreased enzyme activity observed in salinity 30 ppt (33% of that measured in freshwater) suggests that chitobiase activity might be one of the limiting factor for copepod growth at 30 ppt salinity or higher. Km values (μM) determined for organisms evaluated in the present study (copepod A. tonsa = 20.77; mysid Metamysidopsis elongata atlantica = 14.67; nauplii barnacle Balanus improvisus = 18.19; decapod zoea = 14.30; decapod megalopa = 24.77) were lower than those reported for other crustaceans from Northern Hemisphere. Also, they were much lower than those of organisms from different taxonomic groups like bacteria and fungi, but much higher than in protozoans and dinoflagelates. These findings suggest that chitobiase might be differentially evolved in each specific group of organism, and even within different ontogenetic stages of the same species, for a better adaptation to cope with its respective environmental needs.  相似文献   
6.
The first and main target-structure of ultraviolet (UV) radiation in animals is the body surface, including the skin and eyes. Here, we investigated cell damage in the visual system of the crab Neohelice granulata acclimated to constant light and exposed to UVA or UVB at 12:00 h for 30 min. The reactive oxygen species (ROS) production, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase (CAT) activity, and the melatonin immunohistochemical reactivity in the eyestalks were evaluated. The animals that received melatonin and were exposed to UVA and UVB radiation showed a decreased ROS concentration (p < 0.05).The ACAP test showed a decrease (p < 0.05) in their values when the animals received 2 pmol/crab of melatonin (physiological dose) before the exposure to UVA radiation. The animals exposed to UVB radiation after receiving the same dose of melatonin showed an increase (p < 0.05) in the ACAP test compared with the animals exposed to UVB radiation after receiving only crab physiological saline. The CAT activity increased (p < 0.05) in the animals that received melatonin and were exposed to UVA and UVB radiation. Animals exposed to UVA and UVB displayed an increase (p < 0.05) in the LPO levels, whereas animals treated with melatonin showed lower (p < 0.05) LPO levels when irradiated. The results indicate that the specific oxidative parameters altered by UV radiation can be modulated by a physiological dose of melatonin. Moreover, the melatonin regularly produced by virtually all eyestalk cells suggests that it may function to modulate the noxious effects of radiation, at least in the crab N. granulata.  相似文献   
7.
To succeed on land rather than in water, crabs require a suite of physiological and morphological changes, and ultimately the ability to reproduce without access open water. Some species have modified gills to assist in gas exchange but accessory gas exchange organs, usually lungs, occur in many species. In accomplished air-breathers the lung becomes larger and more vascularised with pulmonary vessels directing oxygenated haemolymph to the heart. The relative abundance of O2 in air promotes relative hypoventilation and thus an internal hypercapnia to drive CO2 excretion. Land crabs have a dual circulation via either lungs or gills and shunting between the two may depend on respiratory media or exercise state. During their breeding migration on Christmas Island Gecarcoidea natalis maintained arterial Po2 by branchial O2 uptake, while pulmonary O2 pressure was reduced; partly because exercise doubled relative haemolymph flow through the gills. Related species rely on elevated haemocyanin concentration and affinity for O2 to assist uptake but this compromises unloading at the tissues and thus the aerobic scope of tissues. Aquatic crabs exchange salt and ammonia with water via the gills but in land crabs this is not possible. Birgus latro has adopted uricotelism but other species excrete ammonia in either the urine or as gas. Land crabs minimise urinary salt loss using a filtration-reabsorption system analogous to the kidney. Urine is redirected across the gills where salt reabsorption occurs in systems under hormonal control, although in G. natalis this is stimulatory and in B. latro inhibitory. While crabs occupy a range of habitats from aquatic to terrestrial, these species do not comprise a physiological continuum but across the crab taxa individual species possess appropriate and specific physiological features to survive in their individual habitat.  相似文献   
8.
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, hGαq, with >80% identity to mammalian and arthropod Gαq sequences. In brain and olfactory organ, hGαq mRNA was expressed predominantly in neurons, including virtually all the neuronal cell body clusters of the brain. Gαq protein was also expressed broadly, appearing on western blots as a single band of 46 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that hGαq plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, the expression of a single hGαq mRNA species (6 kb) in the olfactory organ, and the localization of hGαq mRNA predominantly in the olfactory receptor neurons of the olfactory organ strongly suggest that one function of hGαq is to mediate olfactory transduction.  相似文献   
9.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   
10.
Summary The present ultrastructural study deals with the lateral cephalic nerve plexus of Sphaeroma serratum, a neurohemal organ joined to the Y organ (ecdysial gland). This plexus acts as a storage centre for neurosecretory products from two sources: the two autochtonous cells (plexus cells) within the plexus itself, and the neurosecretory cells in various parts of the central nervous system, particulary the mandibular ganglion (A-cells).In prepuberal animals, plexus cells and subesophageal A-cells produce neurosecretory granules of two types measuring 1550±50Å and 1570±40Å respectively. Five categories of axon terminals were distinguished in the plexus. The granules found in two of these terminal types are believed to come from the plexus cells and from the mandibular ganglion A-cells.Cessation of production of neurosecretory granules in these A cells and plexus cells was observed in puberal animals, in the plexus with concomitant depletion and disappearance of different granule categories. The first axon terminals affected by this process are the two categories containing granules originating in the plexus and mandibular ganglion A-cells. Degeneration of the ecdysial gland in male Sphaeroma serratum might be connected with the cessation of granule formation in these two types of cell.
Résumé Chez Sphaeroma serratum, la mue de puberté est suivie d'une dégénérescence de l'organe Y (glands de mue). Le plexus nerveux céphalique latéral, organe neurohémal accolé à cette glande a été l'objet de la présente étude ultrastructurale. Cet organe représente un centre de stockage de neurosécrétions qui proviennent d'une part, de deux cellules autochtones (cellules plexales) situées au sein même de ce plexus, d'autre part, de cellules neurosécrétrices situées dans le ganglion mandibulaire (cellules de type A).Chez les individus pubères, les cellules plexales et les cellules A du ganglion sous-oesophagien synthétisent des granules de neurosécrétion dont la taille est respectivement 1550±50Å et 1570±40Å. Il a été reconnu au sein du plexus 5 catégories de terminaisons dont les granules proviendraient pour deux d'entre elles des cellules plexales et des cellules A du ganglion mandibulaire. Chez les animaux pubères on observe un arrêt de la synthèse des granules de neurosécrétion au sein des cellules plexales et des cellules A du ganglion mandibulaire. Simultanément on enregistre dans le plexus la raréfaction puis la disparition des divers types de granules. Ce processus atteint en premier les terminaisons correspondant aux cellules plexales et aux cellules A du ganglion mandibulaire. La dégénérescence de la glande de mue chez les mâles pourrait être en relation avec l'arrêt de synthèse de ces cellules.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号