首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   65篇
  国内免费   13篇
  2023年   11篇
  2022年   16篇
  2021年   9篇
  2020年   22篇
  2019年   20篇
  2018年   32篇
  2017年   28篇
  2016年   26篇
  2015年   37篇
  2014年   74篇
  2013年   121篇
  2012年   52篇
  2011年   57篇
  2010年   53篇
  2009年   78篇
  2008年   77篇
  2007年   91篇
  2006年   70篇
  2005年   63篇
  2004年   54篇
  2003年   57篇
  2002年   37篇
  2001年   30篇
  2000年   22篇
  1999年   22篇
  1998年   23篇
  1997年   25篇
  1996年   17篇
  1995年   23篇
  1994年   14篇
  1993年   14篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   9篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   8篇
  1983年   12篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有1385条查询结果,搜索用时 15 毫秒
1.
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.  相似文献   
2.
3.
The past few years have seen significant advances in our understanding of eukaryotic genomes. In the field of parasitology, this is best exemplified by the application of genome mapping techniques to the study of genome structure and function in the protozoan parasite, Leishmania. Although much is known about the organism and the diseases it causes, molecular genetics has only recently begun to play a major part in elucidating some of the unusual characteristics of this interesting parasite. Mapping of the small (35 Mb) genome and determination of the functional role of genes by the application of in vitro homologous gene targeting techniques are revealing novel avenues for the development of prophylactic measures.  相似文献   
4.
5.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
6.
7.
A high-throughput screening method has been developed which enables functional analysis of bacteriorhodpsin in whole cell pastes. Reflectance spectra, from as little as 5 ml of Halobacterium salinarum cells, show close correspondence to that obtained from the purified purple membrane (PM), containing bacteriorhodopsin (BR) as the sole protein component. We demonstrate accurate quantification of BR accumulation by ratiometric analysis of BR (Amax 568) and a membrane-bound cytochrome (Amax 410). In addition, ground-state light- and dark-adapted (LA and DA, respectively) spectral differences were determined with high accuracy and precision. Using cells expressing the BR mutant D85N, we monitored transitions between intermediate-state homologues of the reprotonation phase of the light-activated proton pumping mechanism. We demonstrate that phenotypes of three mutants (D85N/T170C, D85N/D96N, and D85N/R82Q) previously characterized for their effect on photocycle transitions are reproduced in the whole cell samples. D85N/T170C stabilizes accumulation of the N state while D85N/D96N accumulates no N state. D85N/R82Q was found to have perturbed the pKa of M accumulation. These studies illustrate the correspondence between pH-dependent ground-state transitions accessed by D85N and the transitions accessed by the wild-type protein following photoexcitation. We demonstrate that whole cell reflectance spectroscopy can be used to efficiently characterize the large numbers of mutants generated by engineering strategies that exploit saturation mutagenesis.  相似文献   
8.
Several hypotheses have been put forward to explain the evolution of extreme sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) explains that extreme SSD has evolved in spiders because smaller males have a mating or survival advantage by climbing faster. However, few studies have supported this hypothesis thus far. Using a wide span of spider body sizes, we show that there is an optimal body size (7.4 mm) for climbing and that extreme SSD evolves only in spiders that: (1) live in high‐habitat patches and (2) in which females are larger than the optimal size. We report that the evidence for the GH across studies depends on whether the body size of individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing.  相似文献   
9.
Masking unmasked   总被引:1,自引:0,他引:1  
ATKINSON  A. C. 《Biometrika》1986,73(3):533-541
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号