首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   10篇
  国内免费   60篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   25篇
  2013年   36篇
  2012年   22篇
  2011年   36篇
  2010年   9篇
  2009年   36篇
  2008年   26篇
  2007年   17篇
  2006年   19篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   16篇
  1998年   13篇
  1997年   16篇
  1996年   6篇
  1995年   13篇
  1994年   7篇
  1993年   10篇
  1992年   12篇
  1991年   7篇
  1990年   13篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   9篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
1.
The hinge in IgA1 and the linker in endoglucanase A (CenA) are quite similar. The IgA1 hinge is 18 amino acids long and contains only proline, threonine and serine. The linker in CenA is 27 amino acids long and contains only proline, threonine and a single serine. IgA proteases from Neisseria gonorrhoeae cleave Pro-Ser and Pro-Thr bonds within the IgA1 hinge sequence, but they do not attack CenA. When the linker sequence of CenA is replaced with the hinge sequence of IgA1, the hybrid polypeptide is susceptible to the N. gonorrhoeae proteases. It is cleaved within the hinge sequence at the same sites as IgA1.  相似文献   
2.
A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging ‘omics’-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia.  相似文献   
3.
A gene of Penicillium funiculosum encoding an endoglucanase was cloned and expressed in Escherichia coli using the lacZ promoter of vector pUC 18. The gene product hydrolyzed carboxymethyl cellulose and showed strong cross reactivity with P. funiculosum anticellulases.  相似文献   
4.
Abstract A cellulase-containing fraction present in the culture fluid of Trichoderma reesei grown on cellulose was obtained by fractionated centrifugation. The buoyant density of this fraction was D = 1.060 g/ml. Its ultrastructural properties, as detected by transmission electron microscopy, are given. The fraction consists of membrane vesicles attached to a carbohydrate polymer. This polymer is positive to Ruthenium red staining.
The effect of urea on the extraction and separation of acidic cellulases from this fraction is described. Linear gradient gels for both urea (up to 8.0 M urea) and polyacrylamide gels (up to 30%) were used to determine adequate separation conditions for isoelectric focusing (IEF) in a polyacrylamide gel matrix. The effect of urea on the extraction and separation conditions was tested by titration curves. In the presence of 6.0−8.0 M urea, the main cellulase-containing hydrolase complex (pIapp4.2) from this fraction is split into 3 isoenzymes and a further cellulase (pI 5.65).  相似文献   
5.
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5 °C and 2.48 mg/(h g) under static aeration solid-state fermentation (SASSF) and 33.9 °C and 5.38 mg/(h g) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30 ± 1 °C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products.  相似文献   
6.
Experiments with dyed and undyed cotton, using different cellulose concentration and with or with out mechanical action showed a high effect of those factors. The process with mechanical action have a higher weight-loss. Dyed cotton with vat and sulfur dyes have almost die same weight-loss than undyed cotton, but on reactive dyed cotton the cellulase hydrolysis is shorter. It was also verified a decrease of hydrolysis extent with an increase of the reactive dye concentration on the cotton substrate. Some synergism due to the enzyme concentration was apparently observed on the changes of the length of the leaving sugars.  相似文献   
7.
Bt毒蛋白Cry1Ac在人造土壤中对赤子爱胜蚓毒理及生化影响   总被引:3,自引:2,他引:1  
Bt毒素能通过转基因作物的花粉、根和残株进入土壤.为评估转基因作物对土壤动物的影响,本文模拟转基因棉的Bt毒素进入土壤的发生程度,用含不同浓度Bt毒蛋白Cry1Ac的人造土壤处理蚯蚓,测定蚯蚓存活率、重量变化及体内总蛋白含量和过氧化氢酶(CAT)、乙酰胆碱酯酶(AchE)、谷胱甘肽?S?转移酶(GST)和纤维素酶活性.结果表明,Bt毒蛋白对蚯蚓的生物量和生理水平影响均不明显,不存在急毒性和亚致死毒性影响,对蚯蚓比较安全.  相似文献   
8.
里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达   总被引:16,自引:0,他引:16  
本工作采用巴氏毕赤酵母Pichiapastoris表达系统进行了里氏木霉Trichodermareesei纤维二糖水解酶Ⅱ(CellobiohydrolaseII)的表达。用RT-PCR的方法从经稻草粉诱导的里氏木霉培养物中分离出纤维二糖水解酶Ⅱ的基因,将其插入到巴氏毕赤酵母的表达载体pPICZαA中,并使之处于α-因子信号肽序列的下游,得到重组质粒pPICZαA-cbh2。通过电穿孔的方法用线性化的pPICZαA-cbh2转化巴氏毕赤酵母GS115菌株,经过大量筛选后得到可以高效表达纤维二糖水解酶的毕赤酵母菌株P.pastorisCBHⅡ1。在甲醇诱导的条件下培养P.pastorisCBHⅡ1,培养液中的CMC活性可达到3.82U/mL,SDS-PAGE分析结果表明纤维二糖水解酶在P.pastorisCBHⅡ1中的表达量远远高于里氏木霉。对表达产物进行了LC-MS分析,结果表明所表达的蛋白为里氏木霉的纤维二糖水解酶。  相似文献   
9.
It has been shown that the wood-rotting mushroom Pleurotus dryinus IBB 903 is able to effectively produce cellulases, xylanase, laccase, and manganese peroxidase in submerged fermentation of mandarin peels and tree leaves. Gradual increasing of lignocellulosic substrates concentration from 1 to 4–6% enhanced enzyme accumulation in culture liquid. A simple and inexpensive medium containing mandarin peels and yeast extract as sole carbon and nitrogen sources allowed simultaneous production of high levels of both hydrolases and oxidases by P. dryinus IBB 903. Supplementation of this medium by copper and manganese caused earlier and faster accumulation of laccase and manganese peroxidase increasing their yield by 1.5 and 7.5 times, respectively. In addition, by adding manganese to the medium it is possible to regulate the ratio of laccase and MnP in enzyme preparation. The presence of lignocellulosic substrate is the requisite for MnP production by P. dryinus IBB 903 since there was no production of MnP when mushroom has been cultivated in the synthetic medium with different carbon source. Among carbon source tested only utilization of glucose resulted to 21-fold increase of fungus laccase specific activity compared to control medium without carbon source. Carboxymethyl cellulase and xylanase appeared to be inducible enzymes.  相似文献   
10.
The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号