首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23244篇
  免费   1038篇
  国内免费   688篇
  2023年   244篇
  2022年   186篇
  2021年   368篇
  2020年   479篇
  2019年   488篇
  2018年   476篇
  2017年   407篇
  2016年   498篇
  2015年   714篇
  2014年   1540篇
  2013年   1653篇
  2012年   1348篇
  2011年   1644篇
  2010年   1294篇
  2009年   991篇
  2008年   1078篇
  2007年   1047篇
  2006年   967篇
  2005年   822篇
  2004年   803篇
  2003年   702篇
  2002年   535篇
  2001年   379篇
  2000年   380篇
  1999年   430篇
  1998年   411篇
  1997年   373篇
  1996年   333篇
  1995年   339篇
  1994年   348篇
  1993年   304篇
  1992年   316篇
  1991年   264篇
  1990年   234篇
  1989年   263篇
  1988年   232篇
  1987年   208篇
  1986年   194篇
  1985年   183篇
  1984年   217篇
  1983年   137篇
  1982年   201篇
  1981年   163篇
  1980年   172篇
  1979年   164篇
  1978年   102篇
  1977年   107篇
  1976年   67篇
  1974年   28篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
In this article, I review the major characteristics of different types of appendage‐like processes that develop at the abdominal segments of many immature insects, and I discuss their controversial morphological value. The main question is whether the abdominal processes are derived from segmental appendages serially homologous to thoracic legs, or whether they are “secondary” outgrowths not homologous with true appendages. Morphological and embryological data, in particular, a comparison with the structure and development of the abdominal appendages in primitive apterygote hexapods, and data from developmental genetics, support the hypothesis of appendicular origin of many of the abdominal processes present in the juvenile stages of various pterygote orders. For example, the lateral processes, such as the tracheal gills in aquatic nymphs of exopterygote insects, are regarded as derived from lateral portions of appendage primordia, homologous with the abdominal styli of apterygotan insects; these processes correspond either to rudimentary telopodites or to coxal exites. The ventrolateral processes, such as the prolegs of different endopterygote insect larvae, appear to be derived from medial portions of the appendicular primordia; they correspond to coxal endites. These views lead to the rejection of Hinton's hypothesis (Hinton [1955] Trans R Entomol Soc Lond 106:455–545) according to which all the abdominal processes of insect larvae are secondary outgrowths not derived from true appendage anlagen. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
4.
In the early 1980s, sheepshead minnow Cyprinodon variegates was introduced into the Pecos River, Texas, U.S.A. where it hybridized with the endemic Pecos pupfish C. pecosensis . By 1985, pupfish populations throughout approximately 300 km of the river consisted exclusively of individuals of hybrid origin (intergrades). There was significant ( P <0·05) geographic variation in most morphological characters; the general pattern of variation was of a bidirectional cline centred near Pecos, Texas. At that site, morphology of intergrade populations resembled mostly that of the introduced species. Upstream and downstream from Pecos, morphology shifted progressively toward that typical of the native form. Intergrade populations were morphologically intermediate to the parental forms, showed a rapid approach to random assortment of characters, and generally exhibited greater morphological variability than occurred in either parent species. These observations and the consistent lack of bimodality in frequency distributions of a morphological hybrid index support the contention that intergrade populations comprise panmictic admixtures of C. variegates and C. pecosensis .  相似文献   
5.
Field observations of two sympatric pitheciine species reveal that the positional repertoire of the white-faced saki, Pithecia pithecia, is dominated by leaping behaviors, whereas the bearded saki, Chiropotes satanas, is predominantly quadrupedal. Examination and comparison of the postcranial skeletal morphologies and limb proportions of these species display numerous features associated with their respective locomotor behaviors. These observations accord with associations found in other primate and mammalian groups and with predictions based on theoretical and experimental biomechanics. Preliminary observations of the skeletal morphology of Cacajao calvus demonstrate a marked similarity to that of Chiropotes. The fossil platyrrhine Cebupithecia sarmientoi displays greater similarity to Pithecia, suggesting that its positional repertoire also included significant leaping and clinging behaviors.  相似文献   
6.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
7.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
8.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号