首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  完全免费   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
2.
Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species   总被引:1,自引:0,他引:1  
Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.  相似文献
3.
4.
Two-dimensional polyacrylamide gel (2-D PAGE) electrophoresis was appraised as an experimental technique for assessing systematic relationships among higher plants and to determine at which level in the taxonomic hierarchy this technique is most generally applicable. 2-D PAGE was performed on denatured extracts of mature leaves from 25 species representing five families of the order Centrospermae (Caryophyllales, Chenopodiales) in the Angiospermae as well as Welwitschia mirabilis (Gymnospermae). Cluster analysis of a 256 spot binary-coded data set derived from the computer-encoded spot patterns of the 25 species successfully separated taxa from the individual to the familial levels of the taxonomic hierarchy in accordance with traditional taxonomic delineations of the taxa.  相似文献
5.
A chemosystematic survey of flavonoids have been made in 55 centrospermous species. On the basis of both the experimental results and published data, the evolutionary significance of distribution patterns of proanthocyanidins, anthocyanidins, C-glycoflavones, flavonols and flavones is discussed. The Nyctaginaceae and Didiereaceae appear to be particularly primitive families, while Caryophyllaceae, Aizoaceae, Cactaceae, Amaranthaceae and Chenopodiaceae are the most advanced of the order.  相似文献
6.
A survey of 112 species of the Caryophyllales showed the presence of flavonols in all eleven families and of C-glycosylflavonoids in nine families, being absent from the Aizoaceae and Cactaceae. 18% of the species contained both classes of compound. C-glycosylflavonoids are reported for the first time in the Amaranthaceae, Basellaceae, Didieraceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae and Molluginaceae. The Caryophyllaceae contained prodominantly C-glycosylflavonoids, suggesting they are the most advanced family in the order.  相似文献
7.
Ribosomal RNA homologies and the thermal stabilities of rRNA/DNA hybrids among ten species of the Centrospermae (including three from the family Caryophyllaceae and seven from five betalain-producing families), three other angiosperms, and one fern, suggest that the betalain-producing families are phylogenetically closer to each other than to the anthocyanin-producing families which are examined.  相似文献
8.
Quantitative and qualitative data are presented for woods of 30 species of woody Polygonaceae. Wood features that ally Polygonaceae with Plumbaginaceae include nonbordered perforation plates, storeying in narrow vessels and axial parenchyma, septate or nucleate fibres, vasicentric parenchyma, pith bundles that undergo secondary growth, silica bodies, and ability to form successive cambia. These features are consistent with pairing of Plumbaginaceae and Polygonaceae as sister families. Wood features that ally Polygonaceae with Rhabdodendraceae include nonbordered perforation plates, presence of vestured pits in vessels, presence of silica bodies and dark-staining compounds in ray cells, and ability to form successive cambia. Of the features listed above, nonbordered perforation plates and ability to form successive cambia may be symplesiomorphies basic to Caryophyllales sensu lato . The other features are more likely to be synapomorphies. Wood data thus support molecular cladograms that show the three families near the base of Caryophyllales s.l. Chambered crystals are common to three genera of the family and may indicate relationship. Ray histology suggests secondary woodiness in Antigonon, Atraphaxis, Bilderdykia, Dedeckera, Eriogonum, Harfordia, Muehlenbeckia, Polygonum , and Rumex . Other genera of the family show little or no evidence of secondary woodiness. Molecular data are needed to confirm this interpretation and to clarify the controversial systematic groupings within the family proposed by various authors. Vessel features of Polygonaceae (lumen diameter, element length, density, degree of grouping) show an extraordinary range from xeromorphy to mesomorphy, indicating that wood has played a key role in ecological and habital shifts within the family; the diversity in ecology and habit are correlated with quantitative wood data.  © 2003 The Linnean Society of London. Botanical Journal of the Linnean Society , 2003, 141 , 25−51.  相似文献
9.
Wood and stem anatomy is studied for seven species of six genera (root anatomy also reported for one species) of Amaranthaceae s.s. Quantitative data on vessels correlate closely with relative xeromorphy of respective species, agreeing with values reported for dicotyledons without successive cambia in comparable habitats. Libriform fibre abundance increases and vessel diameter decreases as stems and roots of the annual Amaranthus caudatus mature. Long, thick-walled fibres in Bosea yervamora may be related to the upright nature of elongate semi-climbing stems. Non-bordered or minutely bordered perforation plates characterize Amaranthaceae, as they do most other Caryophyllales. Amaranthaceae have idioblastic cells containing druses, rhomboidal crystals or crystal sand: these forms intergrade and seem closely related. Rays are present in secondary xylem of the Amaranthaceae studied. Cells intermediate between ray cells and libriform fibres occur in Charpentiera elliptica . Degrees of diversity in rays and reports of raylessness in Amaranthaceae induce discussion of definition and identification of rays in dicotyledons; some sources recognize both rays and radial plates of conjunctive tissue in Amaranthaceae. The action of successive cambia is described: lateral meristem periclinal divisions produce secondary cortex externally, conjunctive tissue internally and yield vascular cambia as well. Vascular cambia produce secondary phloem and secondary xylem, in both ray and fascicular zones, as in a dicotyledon with a single cambium. Identification of meristem activity and appreciation of varied ray manifestations are essential in understanding the ontogeny of stems in Amaranthaceae (which have recently been united with Chenopodiaceae).  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 1–19.  相似文献
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号