首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125811篇
  免费   7636篇
  国内免费   4700篇
  2023年   998篇
  2022年   1336篇
  2021年   2285篇
  2020年   2132篇
  2019年   3415篇
  2018年   2446篇
  2017年   1870篇
  2016年   2813篇
  2015年   5567篇
  2014年   9225篇
  2013年   9982篇
  2012年   7229篇
  2011年   8986篇
  2010年   6310篇
  2009年   5951篇
  2008年   6231篇
  2007年   6688篇
  2006年   5197篇
  2005年   4464篇
  2004年   3388篇
  2003年   2913篇
  2002年   2595篇
  2001年   2032篇
  2000年   1790篇
  1999年   1785篇
  1998年   1592篇
  1997年   1380篇
  1996年   1291篇
  1995年   1562篇
  1994年   1476篇
  1993年   1430篇
  1992年   1428篇
  1991年   1250篇
  1990年   1137篇
  1989年   1037篇
  1988年   1105篇
  1987年   1065篇
  1986年   742篇
  1985年   1324篇
  1984年   1879篇
  1983年   1350篇
  1982年   1808篇
  1981年   1429篇
  1980年   1271篇
  1979年   1258篇
  1978年   747篇
  1977年   657篇
  1976年   572篇
  1975年   406篇
  1973年   440篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Pituitary adenylate cyclase-activating peptide (PACAP) is a neurotrophic peptide involved in a wide range of nervous functions, including development, differentiation, and survival, and various aspects of learning and memory. Here we report that PACAP induces the expression of regulator of calcineurin 1 (RCAN1, also known as DSCR1), which is abnormally expressed in the brains of Down syndrome patients. Increased RCAN1 expression is accompanied by activation of the PKA-cAMP response element-binding protein pathways. EMSA and ChIP analyses demonstrate the presence of a functional cAMP response element in the RCAN1 promoter. Moreover, we show that PACAP-dependent neuronal differentiation is significantly disturbed by improper RCAN1 expression. Our data provide the first evidence of RCAN1, a Down syndrome-related gene, as a novel target for control of the neurotrophic function of PACAP.  相似文献   
2.
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.  相似文献   
3.
ObjectiveTo study the protective effect of total flavonoid in rabdosia rubescens on BIT model by brain ischemic tolerance (hereinafter BIT) model of mice.MethodBIT model is used to block bilateral common carotid arteries and to copy BIT model of mice. After 10 min of transient ischemia for rats in preconditioning group, the mice in the nimodipine group and naoluotong capsule group were given the total flavonoid in rabdosia rubescens (300 mg/kg, 150 mg/kg, 75 mg/kg) for gavage, sham operation group, ischemia/reperfusion injury (hereinafter IRI) group and BIT group were fed with the same volume of 0.5% sodium carboxymethyl cellulose (CMC) once a day for 5 days. After administration for 1 h on day 5 (120 h), the rats in the other groups except for the sham operation group were treated with blood flow block for 30 min and reperfusion for 22 h. The serum NSE level were measured and the brain NO content and NOS activity changes was measured to observe the histopathological changes of brain tissue.ResultsBIT models of mice and in rats were both successfully replicated. The total flavonoid in rabdosia rubescens can decrease the mortality of mice, decrease serum NSE level, increase the content of NO and the activity of NOS in the brain tissue of mice, and improve the pathological damage of cortex and hippocampus of mice.ConclusionThe total flavonoid in rabdosia rubescens can stimulate an endogenous protective mechanism by inducing the release of low levels of cytokines NO and NOS, which reduces the release of serum NSE, relieves the brain tissue ischemia-reperfusion injury, and further improves the protection effect of ischemic preconditioning on brain injury. The damage of brain tissue ischemia and reperfusion, and further improve the ischemia Protective effect of preconditioning on brain injury.  相似文献   
4.
To increase the menaquinone (MK) content of an Elizabethkingia meningoseptica, site-directed mutagenesis was generated to suppress 4-hydroxybenzoate octaprenyl transferase (UbiA) activity and subsequently blocked the ubiquinone (UQ) biosynthesis pathway. Fourteen conserved residues except L174 and G211 were mutated to analyze the effect of site-directed mutagenesis. The expression of UbiA in twelve mutants was decreased in both mRNA and protein levels, which resulted in the decrease of UQ concentration. Based on MenA expression level, 12 mutants were divided into two groups. Second group such as N72A, D76A, K81A, L139A, and D198A enhanced the expression of MenA, which increased MK production by 127.1%, 87.9%, 96.2%, 109.7% and 130.0% in wt-EmUbiA, respectively. In general, blocking UQ synthesis pathway for by site-directed mutagenesis of the active site of UbiA in E. meningoseptica was a promising strategy to increase MK production in E. meningoseptica.  相似文献   
5.
Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs. Using this data, we identified miR-21-3p and miR-27a-5p to be induced 3- to 4-fold in response to oxGP and IL-1β treatment compared with control treatment. Transient overexpression of miR-21-3p and miR-27a-5p resulted in the downregulation of 1,253 genes with 922 genes overlapping between the two miRNAs. Gene Ontology functional enrichment analysis predicted that the two miRNAs were involved in the regulation of nuclear factor κB (NF-κB) signaling. Overexpression of these two miRNAs leads to changes in p65 nuclear translocation. Using 3′ untranslated region luciferase assay, we identified 20 genes within the NF-κB signaling cascade as putative targets of miRs-21-3p and -27a-5p, implicating these two miRNAs as modulators of NF-κB signaling in ECs.  相似文献   
6.
Higher cognitive performance, maintenance of mental health and psychological well-being require adequate prefrontal cortex (PFC) function. “Inverted U-shaped” dopamine model indicates optimal PFC dopamine level is important to attain its function while high or low levels have adverse effects. Catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) may be involved in this complex non-linear PFC dopamine regulation. We addressed whether genetic variation reflecting COMT and MTHFR activities can explain the inter-individual mental health differences in healthy Japanese men (n = 188). The mental health was measured by Mental Health Inventory (MHI)-5 score. The rs4633–rs4818–rs4680 haplotypes were used to represent the multilevel COMT activities, while for MTHFR, the functional single polymorphism, rs1801133 (C677T), was used. We examined the effectiveness of haplotype-based association analysis of COMT on mental health together with studying its interaction with MTHFR-C677T. As a result, the relation between activity-ranked COMT genotype and MHI-5 score showed a tendency to fit into an “inverted U-shaped” quadratic curve (P = 0.054). This curvilinear correlation was significant in the subjects with MTHFR-CC (P < 0.001), but not with MTHFR T-allele carriers (P = 0.793). Our pilot study implies a potential influence of COMT and MTHFR genotypic combination on normal variation of mental health.  相似文献   
7.
A novel cloning vector that can be used to identify recombinant Escherichia coli colonies by activation of the green fluorescent protein gene (GFP) was constructed. Screening using the vector does not require special reagents. The recombinant plasmid activates GFP, and the rate of false-positive results is low.  相似文献   
8.
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5 mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24 h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.  相似文献   
9.
10.
CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号