首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58231篇
  免费   3255篇
  国内免费   1380篇
  2023年   637篇
  2022年   726篇
  2021年   964篇
  2020年   1232篇
  2019年   1516篇
  2018年   1555篇
  2017年   1227篇
  2016年   1240篇
  2015年   1300篇
  2014年   2871篇
  2013年   4434篇
  2012年   2023篇
  2011年   2925篇
  2010年   2140篇
  2009年   2655篇
  2008年   2887篇
  2007年   2894篇
  2006年   2500篇
  2005年   2310篇
  2004年   1938篇
  2003年   1787篇
  2002年   1506篇
  2001年   1149篇
  2000年   1033篇
  1999年   943篇
  1998年   914篇
  1997年   845篇
  1996年   842篇
  1995年   856篇
  1994年   843篇
  1993年   748篇
  1992年   726篇
  1991年   657篇
  1990年   574篇
  1989年   566篇
  1988年   488篇
  1987年   508篇
  1986年   347篇
  1985年   814篇
  1984年   1125篇
  1983年   795篇
  1982年   904篇
  1981年   744篇
  1980年   673篇
  1979年   569篇
  1978年   378篇
  1977年   377篇
  1976年   349篇
  1975年   263篇
  1974年   255篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
CD36 is a scavenger receptor with multiple ligands and cellular functions, including facilitating cellular uptake of free fatty acids (FFAs). Chronic alcohol consumption increases hepatic CD36 expression, leading to the hypothesis that this promotes uptake of circulating FFAs, which then serve as a substrate for triglyceride (TG) synthesis and the development of alcoholic steatosis. We investigated this hypothesis in alcohol-fed wild-type and Cd36-deficient (Cd36−/−) mice using low-fat/high-carbohydrate Lieber-DeCarli liquid diets, positing that Cd36−/− mice would be resistant to alcoholic steatosis. Our data show that the livers of Cd36−/− mice are resistant to the lipogenic effect of consuming high-carbohydrate liquid diets. These mice also do not further develop alcoholic steatosis when chronically fed alcohol. Surprisingly, we did not detect an effect of alcohol or CD36 deficiency on hepatic FFA uptake; however, the lower baseline levels of hepatic TG in Cd36−/− mice fed a liquid diet were associated with decreased expression of genes in the de novo lipogenesis pathway and a lower rate of hepatic de novo lipogenesis. In conclusion, Cd36−/− mice are resistant to hepatic steatosis when fed a high-carbohydrate liquid diet, and they are also resistant to alcoholic steatosis. These studies highlight an important role for CD36 in hepatic lipid homeostasis that is not associated with hepatic fatty acid uptake.  相似文献   
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
4.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by impaired degradation of very long-chain fatty acids (VLCFAs) due to mutations in the ABCD1 gene responsible for VLCFA transport into peroxisomes. Lorenzo''s oil, a 4:1 mixture of glyceryl trioleate and glyceryl trierucate, has been used to reduce the saturated VLCFA level in the plasma of X-ALD patients; however, the mechanism by which this occurs remains elusive. We report the biochemical characterization of Lorenzo''s oil activity toward elongation of very long-chain fatty acid (ELOVL) 1, the primary enzyme responsible for the synthesis of saturated and monounsaturated VLCFAs. Oleic and erucic acids inhibited ELOVL1, and, moreover, their 4:1 mixture (the FA composition of Lorenzo''s oil) exhibited the most potent inhibitory activity. The kinetics analysis revealed that this was a mixed (not a competitive) inhibition. At the cellular level, treatment with the 4:1 mixture reduced the level of SM with a saturated VLCFA accompanied by an increased level of SM with a monounsaturated VLCFA, probably due to the incorporation of erucic acid into the FA elongation cycle. These results suggest that inhibition of ELOVL1 may be an underlying mechanism by which Lorenzo''s oil exerts its action.  相似文献   
5.
6.
Using a novel method to map and cluster chemical reactions, we have re-examined the chemistry of the ligases [Enzyme Commission (EC) Class 6] and their associated protein families in detail. The type of bond formed by the ligase can be automatically extracted from the equation of the reaction, replicating the EC subclass division. However, this subclass division hides considerable complexities, especially for the C–N forming ligases, which fall into at least three distinct types. The lower levels of the EC classification for ligases are somewhat arbitrary in their definition and add little to understanding their chemistry or evolution. By comparing the multi-domain architecture of the enzymes and using sequence similarity networks, we examined the links between overall reaction and evolution of the ligases. These show that, whilst many enzymes that perform the same overall chemistry group together, both convergent (similar function, different ancestral lineage) and divergent (different function, common ancestor) evolution of function are observed. However, a common theme is that a single conserved domain (often the nucleoside triphosphate binding domain) is combined with ancillary domains that provide the variation in substrate binding and function.  相似文献   
7.
目的:探索醛脱氢酶1A1(aldehyde dehydrogenase 1A1,ALDH1A1)在肺腺癌细胞(lung adenocarcinoma cell,LAC)化疗耐药中的作用及机制,为肺癌临床治疗和新型药物的研发提供实验依据。方法:采用慢病毒载体构建ALDH1A1高表达肺腺癌细胞模型,并通过流式细胞术和western blot技术对该细胞模型进行验证。通过CCK8法检测ALDH1A1高表达肺腺癌细胞对肺癌治疗药物顺铂(cisplatin,DDP)、紫杉醇(paclitaxcel)、厄洛替尼(erlotinib)和吉非替尼(gefitinib)的耐药性。通过检测肿瘤干细胞(cancer stem cell,CSC)分子标志物、上皮-间质转化(Epithelial-Mesenchymal Transition,EMT)分子标志物及细胞迁移能力探讨ALDH1A1高表达对肺腺癌细胞的干性和EMT特征的影响。双硫仑(disulfiram,DSF)是ALDH的抑制剂,我们通过CCK8法和transwell细胞迁移实验探究DSF对肺腺癌细胞体外生长和迁移能力的影响,体内实验探究DSF和厄洛替尼联合用药对HCC827-ALDH1A1细胞皮下异种移植瘤生长的影响。结果:ALDH1A1高表达诱导肺腺癌细胞对厄洛替尼、吉非替尼、紫杉醇和顺铂产生不同程度的耐药,干细胞标志物CD44、CD133蛋白表达上调,EMT间充质标志物vimentin蛋白表达上调,transwell实验结果显示ALDH1A1高表达肺腺癌细胞的迁移能力增强,使用ALDH靶向抑制剂DSF能选择性抑制ALDH1A1高表达肺腺癌细胞所增高的迁移能力并克服HCC827-ALDH1A1细胞皮下异种移植瘤的生长,延缓体内耐药。结论:ALDH1A1能诱导肺腺癌细胞对多种抗肺癌药物产生耐药并发生干细胞样转化,靶向抑制ALDH酶活性可克服由ALDH1A1高表达所产生的耐药,为肺癌的临床治疗提供新的思路。  相似文献   
8.
Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp−/− livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp−/− livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp−/− hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3′ untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.  相似文献   
9.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
10.
目的:观察全反式维甲酸(ATRA)对乙酰胆碱受体(AChR)特异性淋巴细胞的体外调控作用,探讨其治疗重症肌无力(MG)的可能机制。方法:建立完全弗氏佐剂(CFA)对照组及实验性自身免疫性重症肌无力(EAMG)组大鼠,并获取淋巴结单个细胞悬液,以ACh R97-116多肽片段以及不同浓度的ATRA体外培养72 h,采用流式细胞仪法、CCK-8法、ELISA法分别检测活细胞比例、细胞凋亡和周期的改变以及Th亚群的格局和B细胞抗体分泌能力的变化。结果:ATRA显著降低活细胞比例(P0.001);不同浓度的ATRA均促进了特异性细胞群的凋亡(P0.001),且呈剂量依赖性,而ATRA未改变AChR特异性淋巴细胞的生长周期;ATRA处理后,CFA和EAMG组的淋巴细胞增殖均受到明显抑制,且ATRA对ACh R特异性的淋巴细胞的抑制明显(EAMG组,P0.01)于CFA组(P0.05);ATRA干预后,ACh R特异性CD4+T淋巴细胞的比例下降(P0.01),且ATRA促进了Th2、Treg细胞亚群百分比(P_(IL-4)0.001,P_(Foxp3)0.001),而抑制了促炎性的Th17、Th1细胞亚群百分比(P_(IL-17)0.05,P_(IFN-γ)0.001);ATRA能够降低ACh R特异性B细胞的抗体分泌能力(P0.01)。结论:ATRA不仅能抑制ACh R特异性T细胞功能,同时也能抑制ACh R特异性B细胞功能,其在MG的临床治疗中可能起治疗作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号