首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49069篇
  免费   4184篇
  国内免费   1419篇
  2024年   32篇
  2023年   677篇
  2022年   633篇
  2021年   1209篇
  2020年   1529篇
  2019年   2044篇
  2018年   1771篇
  2017年   1320篇
  2016年   1368篇
  2015年   1732篇
  2014年   2808篇
  2013年   3222篇
  2012年   2357篇
  2011年   2863篇
  2010年   2875篇
  2009年   2342篇
  2008年   2406篇
  2007年   2461篇
  2006年   2175篇
  2005年   2149篇
  2004年   2155篇
  2003年   1764篇
  2002年   1435篇
  2001年   1166篇
  2000年   811篇
  1999年   901篇
  1998年   709篇
  1997年   610篇
  1996年   616篇
  1995年   748篇
  1994年   697篇
  1993年   619篇
  1992年   553篇
  1991年   502篇
  1990年   391篇
  1989年   373篇
  1988年   331篇
  1987年   272篇
  1986年   259篇
  1985年   253篇
  1984年   288篇
  1983年   185篇
  1982年   246篇
  1981年   188篇
  1980年   167篇
  1979年   107篇
  1978年   84篇
  1977年   82篇
  1976年   65篇
  1972年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we reported that SPHK1 induced the epithelial-mesenchymal transition (EMT) by accelerating CDH1/E-cadherin lysosomal degradation and facilitating the invasion and metastasis of HepG2 cells. Initially, we found that SPHK1 promoted cell migration and invasion and induced the EMT process through decreasing the expression of CDH1, which is an epithelial marker. Furthermore, SPHK1 accelerated the lysosomal degradation of CDH1 to induce EMT, which depended on TRAF2 (TNF receptor associated factor 2)-mediated macroautophagy/autophagy activation. In addition, the inhibition of autophagy recovered CDH1 expression and reduced cell migration and invasion through delaying the degradation of CDH1 in SPHK1-overexpressing cells. Moreover, the overexpression of SPHK1 produced intracellular sphingosine-1-phosphate (S1P). In response to S1P stimulation, TRAF2 bound to BECN1/Beclin 1 and catalyzed the lysine 63-linked ubiquitination of BECN1 for triggering autophagy. The deletion of the RING domain of TRAF2 inhibited autophagy and the interaction of BECN1 and TRAF2. Our findings define a novel mechanism responsible for the regulation of the EMT via SPHK1-TRAF2-BECN1-CDH1 signal cascades in HCC cells. Our work indicates that the blockage of SPHK1 activity to attenuate autophagy may be a promising strategy for the prevention and treatment of HCC.  相似文献   
7.
8.
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   
9.
The present study describes efficient and facile syntheses of varyingly substituted 3-thioaurones from the corresponding 3-oxoaurones using Lawesson’s reagent and phosphorous pentasulfide. In comparison, the latter methodology was proved more convenient, giving higher yields and required short and simple methodology. The structures of synthetic compounds were unambiguously elucidated by IR, MS and NMR spectroscopy. All synthetic compounds were screened for their inhibitory potential against in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Molecular docking studies were also performed in order to examine their binding interactions with AChE and BChE human proteins. Both studies revealed that some of these compounds were found to be good inhibitors against AChE and BChE.  相似文献   
10.
The aim of our study was to investigate the appearance, density and distribution of ghrelin cells and GHS-R1a and GHS-R1b in the human stomach and duodenum during prenatal and early postnatal development. We examined chromogranin-A and ghrelin cells in duodenum, and GHS-R1a and GHS-R1b expression in stomach and duodenum by immunohistochemistry in embryos, fetuses, and infants. Chromogranin-A and ghrelin cells were identified in the duodenum at weeks 10 and 11 of gestation. Ghrelin cells were detected individually or clustered within the base of duodenal crypts and villi during the first trimester, while they were presented separately within the basal and apical parts of crypts and villi during the second and third trimesters. Ghrelin cells were the most numerous during the first (∼11%) and third (∼10%) trimesters of gestation development. GHS-R1a and GHS-R1b were detected at 11 and 16 weeks of gestation, showed the highest level of expression in Brunner's gland and in lower parts of duodenal crypts and villi during the second trimester in antrum, and during the third trimester in corpus and duodenum. Our findings demonstrated for the first time abundant duodenal expression of ghrelin cells and ghrelin receptors during human prenatal development indicating a role of ghrelin in the regulation of growth and differentiation of human gastrointestinal tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号