首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   10篇
  国内免费   8篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   16篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   32篇
  2013年   26篇
  2012年   23篇
  2011年   25篇
  2010年   20篇
  2009年   17篇
  2008年   18篇
  2007年   16篇
  2006年   13篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1986年   2篇
  1984年   3篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
1.
2.
The effect of long-term calorie restriction (CR) on metabolites, fatty acid profiles and energy substrate transporter expression in the brain was assessed in aged rats. Three groups of male Sprague–Dawley rats were studied: (i) a 2 month old ad libitum-fed (2AL group), (ii) a 19 month old ad libitum-fed (19AL group), and (iii) a 19 month old group subjected to 40% CR from the age of 7.5 to 19 months (19CR group). The diet contained high sucrose and low n-3 polyunsaturated fatty acids (PUFA) so as to imitate a Western-style diet. High resolution magic angle spinning-1H NMR showed an effect of aging on brain cortex metabolites compared to 2AL rats, the largest differences being for myo-inositol (+251% and +181%), lactate (+203% and +188%), β-hydroxybutyrate (+176% and +618%) and choline (+148% and +120%), in 19AL and 19 CR rats, respectively. However, brain metabolites did not differ between the 19AL and 19CR groups. Cortex fatty acid profiles showed that n-3 PUFA were 35–47% lower but monounsaturated fatty acids were 40–52% higher in 19AL and 19CR rats compared to 2AL rats. Brain microvessel glucose transporter (GLUT1) was 68% higher in 19AL rats than in 2AL rats, while the monocarboxylate transporter, MCT1, was 61% lower in 19CR rats compared to 19AL rats. We conclude that on a high-sucrose, low n-3 PUFA diet, the brain of aged AL rats had higher metabolites and microvessel GLUT1 expression compared to 2AL rats. However, long-term CR in aged rats did not markedly change brain metabolite or fatty acid profile, but did reduce brain microvessel MCT1 expression.  相似文献   
3.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   
4.
5.
The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.  相似文献   
6.
Rv2140c is one of many conserved Mycobacterium tuberculosis proteins for which no molecular function has been identified. We have determined a high-resolution crystal structure of the Rv2140c gene product, which reveals a dimeric complex that shares strong structural homology with the phosphatidylethanolamine-binding family of proteins. Rv2140c forms low-millimolar interactions with a selection of soluble phosphatidylethanolamine analogs, indicating that it has a role in lipid metabolism. Furthermore, the small molecule locostatin binds to the Rv2140c ligand-binding site and also inhibits the growth of the model organism Mycobacterium smegmatis.  相似文献   
7.
An essential aspect of normal brain function is the bidirectional interaction and communication between neurons and neighbouring glial cells. To this end, the brain has evolved ligand–receptor partnerships that facilitate crosstalk between different cell types. The chemokine, fractalkine (FKN), is expressed on neuronal cells, and its receptor, CX3CR1, is predominantly expressed on microglia. This review focuses on several important functional roles for FKN/CX3CR1 in both health and disease of the central nervous system. It has been posited that FKN is involved in microglial infiltration of the brain during development. Microglia, in turn, are implicated in the developmental synaptic pruning that occurs during brain maturation. The abundance of FKN on mature hippocampal neurons suggests a homeostatic non-inflammatory role in mechanisms of learning and memory. There is substantial evidence describing a role for FKN in hippocampal synaptic plasticity. FKN, on the one hand, appears to prevent excess microglial activation in the absence of injury while promoting activation of microglia and astrocytes during inflammatory episodes. Thus, FKN appears to be neuroprotective in some settings, whereas it contributes to neuronal damage in others. Many progressive neuroinflammatory disorders that are associated with increased microglial activation, such as Alzheimer''s disease, show disruption of the FKN/CX3CR1 communication system. Thus, targeting CX3CR1 receptor hyperactivation with specific antagonists in such neuroinflammatory conditions may eventually lead to novel neurotherapeutics.  相似文献   
8.
Fungi belong to the large kingdom of lower eukaryotic organisms encompassing yeasts along with filamentous and dimorphic members. Microbial P450 enzymes have contributed to exploration of and adaptation to diverse ecological niches such as conversion of lipophilic compounds to more hydrophilic derivatives or degradation of a vast array of environmental toxicants. To better understand diversification of the catalytic behavior of fungal P450s, detailed insight into the molecular machinery steering oxidative attack on the distinctly structured endogenous and xenobiotic substrates is of preeminent interest. Based on a general, CYP102A1-related template the bulk of predicted substrate/inhibitor-binding determinants were shown to cluster near the distal heme face within the six known substrate recognition sites (SRSs) made up by the α-helical B′/F/G/I tetrad, the B′–C interhelical loop and strands of the β6-sheet, population density being highest in the structurally flexible SRS-1 and SRS-4 domains, showing a low degree of conservation. Reactivity toward ligands favorably coincides with the lipophilicity/hydrophilicity profile and bulkiness of critical amino acids acting as selective filters. Some decisive elements may also serve in maintenance of catalytic competence via their action as gatekeepers directing substrate access/positioning or stabilizers of the heme environment enabling dioxygen activation. Non-SRS residues seem to control spin state equilibria and attract redox partners by electrostatic forces. Of note, the inhibitory potency of azole-type fungicides is likely to arise from perturbation of the complex interplay of the mechanistic principles addressed above. Knowledge-supported exploitation of the topological data will be helpful in the manufacture of commodity/specialty chemicals as well as therapeutic agents. Also, engineered fungal P450s may be used to improve pollutant-specific bioremediation of contaminated soils.  相似文献   
9.
Microglia, which are CNS-resident neuroimmune cells, transform their morphology and size in response to CNS damage, switching to an activated state with distinct functions and gene expression profiles. The roles of microglial activation in health, injury and disease remain incompletely understood due to their dynamic and complex regulation in response to changes in their microenvironment. Thus, it is critical to non-invasively monitor and analyze changes in microglial activation over time in the intact organism. In vivo studies of microglial activation have been delayed by technical limitations to tracking microglial behavior without altering the CNS environment. This has been particularly challenging during chronic neurodegeneration, where long-term changes must be tracked. The retina, a CNS organ amenable to non-invasive live imaging, offers a powerful system to visualize and characterize the dynamics of microglia activation during chronic disorders.This protocol outlines methods for long-term, in vivo imaging of retinal microglia, using confocal ophthalmoscopy (cSLO) and CX3CR1GFP/+ reporter mice, to visualize microglia with cellular resolution. Also, we describe methods to quantify monthly changes in cell activation and density in large cell subsets (200-300 cells per retina). We confirm the use of somal area as a useful metric for live tracking of microglial activation in the retina by applying automated threshold-based morphometric analysis of in vivo images. We use these live image acquisition and analyses strategies to monitor the dynamic changes in microglial activation and microgliosis during early stages of retinal neurodegeneration in a mouse model of chronic glaucoma. This approach should be useful to investigate the contributions of microglia to neuronal and axonal decline in chronic CNS disorders that affect the retina and optic nerve.  相似文献   
10.
Alzheimer's disease (AD) is the most common form of dementia in the elderly and represents an important and increasing clinical challenge in terms of diagnosis and treatment. Mutations in the genes encoding amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) are responsible for early-onset autosomal dominant AD. The ε4 allele of the apolipoprotein E (APOE) gene has been recognized as a major genetic risk factor for the more common, complex, late-onset AD. Fibrillar deposits by phosphorylated tau are also a key pathological feature of AD. The retromer complex also has been reported to late-onset AD. More recently, genome-wide association studies (GWASs) identified putative novel candidate genes associated with late-onset AD. Lastly, several studies showed that circulating microRNAs (miRNAs) in the cerebrospinal fluid (CSF) and blood serum of AD patients can be used as biomarkers in AD diagnosis. This review addresses the advances and challenges in determining genetic and diagnostic markers for complex AD pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号