首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   16篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   6篇
  2011年   1篇
  2010年   1篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree‐based [neighbour‐joining (NJ)]; distance‐based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character‐based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00–25.16%), whereas within a species this was 0.81% (0.00–9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set – BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%).  相似文献   
2.
对采自辽东湾和韩国江华岛的2个海蜇群体56个个体的线粒体COI基因序列进行扩增,并结合GenBank上其他15个海蜇样品的同源序列对其进行序列变异分析,研究海蜇群体的遗传特征和群体遗传结构状况.在所分析的71个个体中共检测到28个多态位点,定义了32种单倍型.海蜇群体呈现出高的单倍型多样性(0.91±0.06~0.94±0.01)和中等或较低的核苷酸多样性[(0.60±0.34)%~(0.68±0.40)%].与其他几种大型水母相比,海蜇群体的遗传多样性水平较高.系统分析结果显示,海蜇群体间具有2个明显的单倍型谱系分支.比较海蜇不同群体间的遗传分化指数(FST)和分子变异分析(AMOVA)发现,在本研究取样范围内不同海蜇群体间存在明显的遗传结构.不同海蜇群体存在复杂的遗传模式,海蜇独特的生活史特征、其分布海域的海流状况及人为因素如增殖放流等可能是造成海蜇这种复杂遗传模式的原因.  相似文献   
3.
根据线粒体COI基因片段分析,柑橘黑刺粉虱Aleurocanthus spiniferus (Quaintance)种群和茶园黑刺粉虱种群之间的遗传距离(0.185-0.247)明显高于柑橘黑刺粉虱不同地理种群之间的遗传距离(0.002-0.076),也明显高于茶园黑刺粉虱不同地理种群之间的遗传距离(0-0.053)。由此推断柑橘黑刺粉虱和茶园黑刺粉虱属于黑刺粉虱的不同生物型,或不同种的Aleurocanthus属粉虱。地理距离和柑橘黑刺粉虱遗传距离具有较大的相关性,同类寄主专化型黑刺粉虱,岳阳洞庭湖区地理种群与其他地区地理种群遗传距离最远。长沙不同柑橘品种上的黑刺粉虱种群之间遗传距离小于0.01。  相似文献   
4.
为弥补传统形态分类方法的不足,探究应用DNA条形码技术进行分子生物学鉴定的可行性,本研究用DNA条形码技术检测了青海省海东地区3目6科14属18种110只小型兽类的COI基因部分序列。分析所测COI基因序列可知:种内遗传距离≤3%,种间遗传距离5-10%,属间遗传距离12-19%,种间遗传距离显著大于种内遗传距离。NJ树显示同种个体聚为有很高支持度的单一分支。有6个个体(4只黄胸鼠、2只小家鼠)在现场鉴定中被误定为其他种类。研究结果表明使用条形码技术能纠正形态学鉴定中的错误,也说明动物线粒体COI基因是一个有效的DNA条形码标准基因。  相似文献   
5.
This paper outlines a novel, non-invasive procedure to obtain DNA from Mexican tarantulas (Brachypelma spp.) using exuvia. These species are important in the pet trade and species identification is important for international wildlife law enforcement. Mitochondrial DNA sequence from the cytochrome c oxidase subunit I gene was used to investigate the relationship between various Brachypelma spp. This phylogeny was used as a framework to assign unknown specimens and spiderlings to species. The benefits to conservation, research, and international wildlife law enforcement that are gained by the ability to accurately identify species without the death of the specimen are explored. Our data also suggest that there is no support for the genus Brachypelmides as some authors have proposed and upholds the synonymy of Locht et al. (1999) J Arachnol 27:196–200.  相似文献   
6.
Nucleotide sequences of the mtDNA COI and cytochrome b genes were determined in Magadanichthys skopetsi, a member of the new monotypic genus Magadanichthys, endemic to the northern coast of the Sea of Okhotsk. Comparison of this species with other representatives of the subfamily Gymnelinae (family Zoarcidae) revealed high genetic similarity of M. skopetsi to Hadropareia middendorffii and considerable differences between these species and Gymnelopsis ochotensis.  相似文献   
7.
Diachasmimorpha longicaudata is an Opiinae parasitoid used to control tephritid fruit flies, which cause tremendous economic losses of fruits worldwide. In Thailand, D. longicaudata is classified as three sibling species, DLA, DLB and DLBB, based on the morphological and biological species concepts but their genetic variation has not been studied. Therefore, we investigated the genetic differentiation of the mitochondrial COI gene to clarify the ambiguous taxonomy of this species complex. The 603‐bp COI region was sequenced from laboratory‐bred colonies and field‐collected specimens from seven locations representing five geographical regions in Thailand. DLA was associated with the host Bactrocera correcta while DLB and DLBB were associated with Bactrocera dorsalis. The interspecific nucleotide differences of COI sequences among the three groups ranged from 6.70% to 7.62% (Kimura 2‐parameter distance), which adequately separates species complexes within the order Hymenoptera and supports the current sibling species classification. The neighbor joining, maximum likelihood and consensus Bayesian phylogenetic trees constructed from COI sequences revealed that the three sibling species of laboratory and field‐collected D. longicaudata are monophyletic with 100% support. The high genetic variation and molecular phylogeny of the COI sequences were shown to discriminate between the D. longicaudata species examined in this study.  相似文献   
8.
王兴亚  许国庆 《昆虫学报》2014,57(9):1061-1074
【目的】为了明确我国甜菜夜蛾Spodoptera exigua地理种群间的遗传分化及基因流,阐明该种害虫在我国的种群历史动态。【方法】本研究对采自我国20个地理种群的529头甜菜夜蛾样品进行线粒体COI基因序列测定与分析,利用DnaSP 5.0和Arlequin 3.11软件分析种群间遗传多样性、遗传分化、基因流水平及分子变异,构建了单倍型系统发育树与单倍型网络图。【结果】在所分析的所有529个序列样本中,共检测出10个单倍型,其中Hap_1为所有种群所共享。总群体遗传多样性较低(Hd=0.257±0.025,Pi=0.0007±0.0001,Kxy=0.323),群体间遗传分化较小(FST=0.211),基因流水平较高(Nm=1.870)。AMOVA分析表明,甜菜夜蛾遗传变异主要来自种群内,种群间变异水平较低。各种群间遗传分化程度与地理距离无显著相关性(R2=0.005,P>0.05)。各单倍型相互散布在不同种群中,未形成明显系统地理结构。中性检验(Tajima’s D=-2.177, P<0.05; Fu’s FS=-8.629, P<0.05)与错配分布分析表明,我国甜菜夜蛾种群曾经历种群近期扩张。【结论】研究结果揭示,甜菜夜蛾各种群间的基因交流并未受到地理距离的影响,验证了甜菜夜蛾具有高度的迁飞能力。  相似文献   
9.
Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), is a pest of grain and vegetable crops endemic to the Western Hemisphere that has recently become widespread in sub‐Saharan Africa and has appeared in India. An important tool for monitoring S. frugiperda in the USA is pheromone trapping, which would be of value for use with African populations. Field experiments were conducted in Togo (West Africa) to compare capture of male fall armyworm using three commercially available pheromone lures and three trap designs. The objectives were to identify optimum trap × lure combinations with respect to sensitivity, specificity, and cost. Almost 400 moths were captured during the experiment. Differences were found in the number of S. frugiperda moths captured in the various trap designs and with the three pheromone lures, and in the number of non‐target moths captured with each lure. The merits of each trap × lure combination are discussed with respect to use in Africa. A nearly equal number of COI‐CS (161) and COI‐RS (158) moths was captured with no differences found in COI marker proportions among traps or lures. However, the diagnostic rice strain marker Tpi was rarely found. Overall, the genetic characterization of the pheromone trap collections indicated a consistent distribution of genetic markers from 2016 to 2017, suggesting a population at or near equilibrium.  相似文献   
10.
The seamounts chain offers a set of fragmented habitats in which species with poor dispersive ability may undergo divergence in allopatry. Such a scenario may explain the endemism often described on seamounts. In gastropods, it is possible to infer the mode of development of a species from the morphology of its larval shell. Accordingly, we examine the population genetics of several caenogastropods from the Norfolk and Lord Howe seamounts (south‐west Pacific) with contrasting modes of larval development. A prerequisite to our study was to clarify the taxonomic framework. The species delimitation was ruled using an integrative approach, based on both morphological and molecular evidence. Molecular data indicate an unexpected taxonomic diversity within the existing species names. Both the clarification of the taxonomic framework and the importance of the sampling effort allow us to confidently detect cryptic diversity and micro‐endemism. These results are discussed in relation to the dispersive capacities of the organisms. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 420–438.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号