首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
3.
Blastopore formation, the embryonic disk, archenteron and notochord elongation, and Brachyury expression in the marsupial frog Gastrotheca riobambae was compared with embryos of Xenopus laevis and of the dendrobatids Colostethus machalilla and Epipedobates anthonyi. In contrast with X. laevis embryos, the blastopore closes before elongation of the archenteron and notochord in the embryos of G. riobambae and of the dendrobatid frogs. Moreover, the circumblastoporal collar (CBC) thickens due to the accumulation of involuted cells. An embryonic disk, however, is formed only in the G. riobambae gastrula. We differentiate three gastrulation patterns according to the speed of development: In X. laevis, elongation of the archenteron and notochord begin in the early to mid gastrula, whereas in the dendrobatids C. machalilla and E. anthonyi the archenteron elongates at mid gastrula and the notochord elongates after gastrulation. In G. riobambae, only involution takes place during gastrulation. Archenteron and notochord elongation occur in the post gastrula. In the non-aquatic reproducing frogs, the margin of the archenteron expands anisotropically, resulting in an apparent displacement of the CBC from a medial to a posterior location, resembling the displacement of Hensen's node in the chick and mouse. The differences detected indicate that amphibian gastrulation is modular.  相似文献   
4.
5.
Arrow worms (the phylum Chaetognatha), which are among the major marine planktonic animals, are direct developers and exhibit features characteristic of both deuterostomes and protostomes. In particular, the embryonic development of arrow worms appears to be of the deuterostome type. Brachyury functions critically in the formation of the notochord in chordates, whereas the gene is expressed in both the blastopore and stomodeum invagination regions in embryos of hemichordates and echinoderms. Here we analyzed the expression of Brachyury (Pg-Bra) in the arrow worm Paraspadella gotoi and showed that Pg-Bra is expressed in the blastopore region and the stomodeum region in the embryo and then around the mouth opening region at the time of hatching. The expression of Pg-Bra in the embryo resembles that of Brachyury in embryos of hemichordates and echinoderms, whereas that in the mouth opening region in the hatchling appears to be novel.  相似文献   
6.
7.
In order to gain insights into the evolution of gastrulation mechanisms among vertebrates, we have characterized a Brachyury-related gene in a lamprey, Lampetra fluviatilis, and in a chondrichthyan, Scyliorhinus canicula. These two genes, respectively termed LfT and ScT, share with their osteichthyan counterparts prominent expression sites in the developing notochord, the tailbud, but also a transient expression in the prechordal plate, which is likely to be ancestral among vertebrates. In addition, the lamprey LfT gene is transcribed in the endoderm of the pharyngeal arches and the epiphysis, two expression sites that have not been reported thus far in gnathostomes, and, as in the chick, in the differentiating nephrotomes. Since Brachyury expression in nascent mesoderm and endoderm is highly conserved among vertebrates as well as cephalochordates, we have used this marker to identify these cell populations during gastrulation in the dogfish. The results suggest that these cells are initially present over the whole margin of the blastoderm and are displaced during gastrulation to its posterior part, which may correspond to the site of mesoderm and endoderm internalization. These data provide the first molecular characterization of gastrulation in a chondrichthyan. They indicate that gastrulation in the dogfish and in some amniotes shares striking similarities despite the phylogenetic distance between these species. This supports the hypothesis that the extensively divergent morphologies of gastrulae among vertebrates largely result from adaptations to the presence of yolk.  相似文献   
8.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   
9.
Mammalian development requires commitment of cells to restricted lineages, which requires epigenetic regulation of chromatin structure. Epigenetic modifications were examined during in vitro differentiation of murine embryonic stem (ES) cells. Global histone acetylation, a euchromatin marker, declines dramatically within 1 day of differentiation induction and partially rebounds by day 2. Histone H3-Lys9 methylation, a heterochromatin marker, increases during in vitro differentiation. Conversely, the euchromatin marker H3-Lys4 methylation transiently decreases, then increases to undifferentiated levels by day 4, and decreases by day 6. Global cytosine methylation, another heterochromatin marker, increases slightly during ES cell differentiation. Chromatin structure of the Oct4 and Brachyury gene promoters is modulated in concert with their pattern of expression during ES cell differentiation. Importantly, prevention of global histone deacetylation by treatment with trichostatin A prevents ES cell differentiation. Hence, ES cells undergo functionally important global and gene-specific remodeling of chromatin structure during in vitro differentiation. genesis 38:32-38, 2004.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号