首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59335篇
  免费   2518篇
  国内免费   734篇
  2023年   361篇
  2022年   540篇
  2021年   1201篇
  2020年   730篇
  2019年   982篇
  2018年   770篇
  2017年   471篇
  2016年   1058篇
  2015年   2942篇
  2014年   6183篇
  2013年   5303篇
  2012年   4515篇
  2011年   5173篇
  2010年   3597篇
  2009年   3051篇
  2008年   3135篇
  2007年   3434篇
  2006年   2088篇
  2005年   1772篇
  2004年   999篇
  2003年   770篇
  2002年   699篇
  2001年   481篇
  2000年   446篇
  1999年   458篇
  1998年   396篇
  1997年   322篇
  1996年   371篇
  1995年   501篇
  1994年   420篇
  1993年   475篇
  1992年   435篇
  1991年   454篇
  1990年   397篇
  1989年   392篇
  1988年   413篇
  1987年   335篇
  1986年   298篇
  1985年   514篇
  1984年   817篇
  1983年   525篇
  1982年   700篇
  1981年   700篇
  1980年   507篇
  1979年   510篇
  1978年   310篇
  1977年   333篇
  1976年   304篇
  1974年   225篇
  1973年   227篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs. Using this data, we identified miR-21-3p and miR-27a-5p to be induced 3- to 4-fold in response to oxGP and IL-1β treatment compared with control treatment. Transient overexpression of miR-21-3p and miR-27a-5p resulted in the downregulation of 1,253 genes with 922 genes overlapping between the two miRNAs. Gene Ontology functional enrichment analysis predicted that the two miRNAs were involved in the regulation of nuclear factor κB (NF-κB) signaling. Overexpression of these two miRNAs leads to changes in p65 nuclear translocation. Using 3′ untranslated region luciferase assay, we identified 20 genes within the NF-κB signaling cascade as putative targets of miRs-21-3p and -27a-5p, implicating these two miRNAs as modulators of NF-κB signaling in ECs.  相似文献   
2.
Higher cognitive performance, maintenance of mental health and psychological well-being require adequate prefrontal cortex (PFC) function. “Inverted U-shaped” dopamine model indicates optimal PFC dopamine level is important to attain its function while high or low levels have adverse effects. Catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) may be involved in this complex non-linear PFC dopamine regulation. We addressed whether genetic variation reflecting COMT and MTHFR activities can explain the inter-individual mental health differences in healthy Japanese men (n = 188). The mental health was measured by Mental Health Inventory (MHI)-5 score. The rs4633–rs4818–rs4680 haplotypes were used to represent the multilevel COMT activities, while for MTHFR, the functional single polymorphism, rs1801133 (C677T), was used. We examined the effectiveness of haplotype-based association analysis of COMT on mental health together with studying its interaction with MTHFR-C677T. As a result, the relation between activity-ranked COMT genotype and MHI-5 score showed a tendency to fit into an “inverted U-shaped” quadratic curve (P = 0.054). This curvilinear correlation was significant in the subjects with MTHFR-CC (P < 0.001), but not with MTHFR T-allele carriers (P = 0.793). Our pilot study implies a potential influence of COMT and MTHFR genotypic combination on normal variation of mental health.  相似文献   
3.
A novel cloning vector that can be used to identify recombinant Escherichia coli colonies by activation of the green fluorescent protein gene (GFP) was constructed. Screening using the vector does not require special reagents. The recombinant plasmid activates GFP, and the rate of false-positive results is low.  相似文献   
4.
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5 mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24 h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.  相似文献   
5.
6.
CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.  相似文献   
7.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   
8.
9.
Potassium inward rectifier KIR2.1 channels contribute to the stable resting membrane potential in a variety of muscle and neuronal cell-types. Mutations in the KIR2.1 gene KCNJ2 have been associated with human disease, such as cardiac arrhythmias and periodic paralysis. Crystal structure and homology modelling of KIR2.1 channels combined with functional current measurements provided valuable insights in mechanisms underlying channel function. KIR2.1 channels have been cloned and analyzed from all main vertebrate phyla, except reptilians. To address this lacuna, we set out to clone reptilian KIR2.1 channels. Using a degenerated primer set we cloned the KCNJ2 coding regions from muscle tissue of turtle, snake, bear, quail and bream, and compared their deduced amino acid sequences with those of KIR2.1 sequences from 26 different animal species obtained from Genbank. Furthermore, expression constructs were prepared for functional electrophysiological studies of ectopically expressed KIR2.1 ion channels. In general, KCNJ2 gene evolution followed normal phylogenetic patterns, however turtle KIR2.1 ion channel sequence is more homologues to avians than to snake. Alignment of all 31 KIR2.1 sequences showed that all disease causing KIR2.1 mutations, except V93I, V123G and N318S, are fully conserved. Homology models were built to provide structural insights into species specific amino acid substitutions. Snake KIR2.1 channels became expressed at the plasmamembrane and produced typical barium sensitive (IC50 ∼6 μM) inward rectifier currents.  相似文献   
10.
Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal/:Soat2+/+ mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9 mg in Lal+/+:Soat2+/+ littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal/:Soat2+/+ mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal/:Soat2/ littermates. The level of EC accumulation in the SI of the Lal/:Soat2/ mice was also much less than in their Lal/:Soat2+/+ littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal/:Soat2/ mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号