首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  完全免费   7篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
排序方式: 共有27条查询结果,搜索用时 48 毫秒
1.
A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.  相似文献
2.
This study investigates the small-scale stratification of bacterial community composition and functional diversity in the rhizosphere of maize. Maize seedlings were grown in a microcosm with a horizontal mesh (53 M) creating a planar root mat and rhizosphere soil. An unplanted microcosm served as control. Thin slices of soil were cut at different distances from the mesh surface (0.2–5.0 mm) and analysed for bacterial community composition by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) of 16S rDNA and tested for activities of different enzymes involved in C, N, P and S cycling. Bacterial community composition and microbial functional diversity were affected by the presence of the maize roots. The bacterial composition showed a clear gradient up to 2.2 mm from the root surface, while no such gradient was observed in the unplanted pot. Invertase and phosphatase activities were higher in the close vicinity of maize roots (0.2–0.8 mm), whereas xylanase activity was unaffected. This study shows that the changes in bacterial community composition and functional diversity induced by roots may extend several millimetres into the soil.  相似文献
3.
鄱阳湖湖泊细菌群落组成及结构——以松门山为例   总被引:7,自引:0,他引:7       下载免费PDF全文
于2011年5月在鄱阳湖——松门山湖区采集底泥与表层水样,分别提取了表层水体浮游和底泥微生物基因组DNA,利用454高通量测序技术对细菌的16S rRNA基因进行了序列测定,分析了湖泊底泥细菌、水体浮游细菌群落结构特征。结果显示:底泥细菌OTUs(Operational Taxonomic Units)为1454,表层水体浮游细菌OTUs为269;底泥细菌群落比表层水体更加多样化,底泥细菌的物种数大大多于表层水体。同时,底泥细菌群落与表层浮游细菌群落结构存在显著差异。物种分类显示鄱阳湖底泥细菌种类隶属于20门,228属,其中优势种群为δ-变形菌纲(Deltaproteobacteria)、β-变形菌纲(Betaproteobacteria)和疣微菌门(Verrucomicrobia);表层水体浮游细菌隶属于13门116属,优势种群为β-变形菌纲、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)。结果进一步揭示,无论是浮游细菌群落还是沉积物细菌群落,优势细菌种群的基因型多样性更高。  相似文献
4.
The spatial and temporal variability of bacterial communities were determined for the nearshore waters of Lake Michigan, an oligotrophic freshwater inland sea. A freshwater estuary and nearshore sites were compared six times during 2006 using denaturing gradient gel electrophoresis (DGGE). Bacterial composition clustered by individual site and date rather than by depth. Seven 16S rRNA gene clone libraries were constructed, yielding 2717 bacterial sequences. Spatial variability was detected among the DGGE banding patterns and supported by clone library composition. The clone libraries from deep waters and the estuary environment revealed highest overall bacterial diversity. Betaproteobacteria sequence types were the most dominant taxa, comprising 40.2–67.7% of the clone libraries. BAL 47 was the most abundant freshwater cluster of Betaproteobacteria , indicating widespread distribution of this cluster in the nearshore waters of Lake Michigan. Incertae sedis 5 and Oxalobacteraceae sequence types were prevalent in each clone library, displaying more diversity than previously described in other freshwater environments. Among the Oxalobacteraceae sequences, a globally distributed freshwater cluster was determined. The nearshore waters of Lake Michigan are a dynamic environment that experience forces similar to the coastal ocean environment and share common bacterial diversity with other freshwater habitats.  相似文献
5.
Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.  相似文献
6.
Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.  相似文献
7.
The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.  相似文献
8.
太湖有机聚集体上附着细菌群落结构与动态的T-RFLP分析   总被引:1,自引:0,他引:1  
有机聚集体(organic aggregates),是指由浮游动(植)物的残体、粪便颗粒及各种有机碎屑、活的自养及异养微生物以及无机颗粒等由于物理的、化学的或生物的作用聚集而成的颗粒物。人们对水生态系统中有机聚集体的认识始于 20 世纪 50 年代的海洋学研究。细菌是有机聚集体最重要的组成部分之一。有机聚集体在水体中物质与能量循环中的作用很大程度上是靠附着其上的异养细菌而起作用的。目前,有机聚集体的概念在水生态系统中已被广泛接受,由于其独特的物理、化学及生物组成,以及复杂的形成、转化过程,使其在水生态系统中具有重要的生态学作用。然而,有关浅水湖泊中有机聚集体上细菌群落的研究目前尚未见报道。近年来,基于 DNA 多聚酶链式反应(PCR)的末端限制性片段长度多态性(T-RFLP)技术是一种新兴的研究微生物多态性的分子生物学方法。该技术由于具有快捷、高分辨率、高通量和不依赖于培养等优点而被广泛应用于微生物群落结构的时空演替研究。本研究采用 T-RFLP 技术,研究了太湖梁溪河入湖河口(Site A)和贡湖湾(Site B)2006 年 6 月至2007 年 5 月一年间有机聚集体上附着细菌群落组成的时空变化规律。T-RFLP 分析检测到这两个采样点共有 187 个独特的末端限制性片段(T-RFs),月平均 T-RFs 分别 42.7 和 44.9。t 检验显示它们没有显著性差异(P >0.05)。虽然河口的营养盐浓度要显著高于贡湖湾(P <0.01),T-RFLP 结果表明,太湖中营养盐的浓度已经不是有机聚集体上附着细菌多样性的限制因子。聚类分析显示,除了春季外,河口和贡湖湾有机聚集体上细菌群落结构有明显的不同。在 T-RFLP 分析附着细菌群落组成及季节变化的基础上,采用多元统计方法研究环境因子与附着细菌群落组成变化的相关性。典型对应分析(CCA)结果表明诸多环境因子中,DIP、DIN 和水温与有机聚集体上细菌群落结构的变化具有显著的相关性 (P < 0.05)。  相似文献
9.
The bacterial candidate division JS1 dominates a number of 16S rRNA gene libraries from deep subseafloor sediments, yet its distribution in shallow, subsurface sediments has still to be fully documented. Sediment cores (down to 5.5 m) from Wadden Sea tidal flats (Neuharlingersieler Nacken and Gr?ninger Plate) were screened for JS1 16S rRNA genes using targeted PCR-denaturing gradient gel electrophoresis (DGGE), which also detects some other important Bacteria. Bacterial subpopulations at both sites were dominated by Gammaproteobacteria in the upper sediment layers (down to 2 m) and in deeper layers by members of the Chloroflexi. The deeper layers of Neuharlingersieler Nacken consisted of grey mud with low sulphate (0.1-10 mM), elevated total organic carbon (TOC) ( approximately 1-2%) and JS1 sequences were abundant. In contrast, the deeper sandy layers of Gr?ninger Plate, despite also having reduced sulphate concentrations, had lower TOC (<0.6%) with few detectable JS1 sequences. Results indicated that JS1 prefers muddy, shallow, subsurface sediments with reduced sulphate, whereas Chloroflexi may out-compete JS1 in shallow, sandy, subsurface sediments. Bacterial population changes at both sites ( approximately 2 m) were confirmed by cluster analysis of DGGE profiles, which correlated with increased recalcitrance of the organic matter. This study extends the biogeographical range of JS1. The presence of JS1 and Chloroflexi in Wadden Sea sediments demonstrates that subsurface tidal flats contain similar prokaryotic populations to those found in the deeper subseafloor biosphere.  相似文献
10.
In order to explore the responses of the bacterioplankton community to different types of aquaculture environments, three mariculture ponds comprised of groupers (Epinephelus diacanthus, ED), prawns (Penaeus vannamei, PV), and abalone (Haliotis diversicolor supertexta, HDS) in southeast, coastal China were investigated. The free-living bacterial diversity was analyzed through the construction of 16S rDNA clone library. A total of 203 16S rDNA sequences from three clone libraries were classified into 118 operational taxonomic units (OTUs), of which 51, 31, and 42 OTUs were distributed in the ED, PV, and HDS pond, respectively, with Bacteroidetes (30.6%), Actinobacteria (55.2%), and Cyanobacteria (32.8%) as the dominant division in the respective ponds. Meanwhile, each pond occupied some unique OTUs that were affiliated with uncommon (sub-)phyla, such as candidate OP11 division, Acidobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia. Bacterial diversity in the ED pond was the richest, followed by the HDS and the PV pond. OTUs of 61.9% and 94.9% have less than 90% and 97% similarity to their nearest neighbors in public databases, respectively. All OTUs were grouped into 67 clusters, covering 11 (sub-)phyla. The OTUs only from single pond distributed in 53 clusters (79.1%), the OTUs shared by two ponds were affiliated with 14 clusters (20.9%), and none of clusters was formed by the OTUs which commonly originated from the three pond libraries, suggesting that the composition of bacterial populations in these ponds were significantly different. These results indicate that the aquatic environment created by different mariculture animals may foster very special and complex bacterial communities. Handling editor: David Philip Hamilton  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号