首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   232篇
  国内免费   105篇
  2024年   5篇
  2023年   61篇
  2022年   45篇
  2021年   163篇
  2020年   153篇
  2019年   214篇
  2018年   104篇
  2017年   65篇
  2016年   69篇
  2015年   105篇
  2014年   146篇
  2013年   178篇
  2012年   101篇
  2011年   107篇
  2010年   55篇
  2009年   74篇
  2008年   83篇
  2007年   66篇
  2006年   57篇
  2005年   58篇
  2004年   60篇
  2003年   51篇
  2002年   43篇
  2001年   24篇
  2000年   28篇
  1999年   20篇
  1998年   29篇
  1997年   34篇
  1996年   24篇
  1995年   22篇
  1994年   22篇
  1993年   17篇
  1992年   16篇
  1991年   16篇
  1990年   10篇
  1989年   7篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   6篇
  1984年   10篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1973年   4篇
排序方式: 共有2419条查询结果,搜索用时 703 毫秒
1.
A general in vitro cloning system was established for four Helleborus species: H. argutifolius, H. foetidus, H. niger and H. orientalis. The plant material was introduced in vitro from axillary buds. A Murashige and Skoog (MS)—based medium (Murashige and Skoog 1962) was used supplemented with 2% (w/v) sucrose, 2-isopentenyladenine (2-iP) and 6-benzylaminopurine (BA). Multiplication rates depended on the genotype and varied from 1.3 for H. foetidus till 3.8 for H. niger. The first results showed that the rooting phase could be done ex vitro. Rooting was induced by a drench for one week in a solution of indole-3-butyric acid (IBA -3 mg l−1) and 1-naphthaleneacetic acid (NAA-1 mg l−1) at 5°C.  相似文献   
2.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
3.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   
4.
Delhanty P  Locke M 《Tissue & cell》1989,21(6):891-909
Insect epidermal cell surfaces can be seen by scanning electron microscopy after removal of the basal lamina. This let us study surface changes in the 5th larval stage of Calpodes ethlius (Lepidoptera, Hesperiidae) in preparation for metamorphosis at the end of the stadium, in particular changes in the basal cell processes or feet, intercellular lymph spaces, filopodia and hemidesmosomes. The feet develop in three phases, initiation, elongation and contraction. Initial growth begins immediately after ecdysis and continues until commitment to pupation 66 hr later. During this phase the feet are randomly oriented. Elongation and orientation begin after commitment to pupation. Orientation is probably achieved by selective survival and growth of those feet that are axially oriented rather than by reorientation. As the larva shortens to the pupal form late in the stadium, contraction of the feet occurs and the cells become columnar. The feet finally disappear as the cells rearrange themselves into new positions in the pupal epidermis. The lateral margins of the feet are united by adhesions even when their interdigitations are most complex. The adhesions separate an intercellular lymph space from the haemolymph. The lymph space remains small through most of the stadium, but enlarges with the loss of lateral junctions as the feet contract and eventually extends along most of the length of the columnar cells. Filopodia then form and span the gaps between the cells as though they have been induced by the separation and loss of lateral cell to cell contact. Scanning electron microscopy also shows that hemidesmosomes reflect the axial alignment of the cells even before the orientation of the feet. The hemidesmosome plaques are linear structures having a constant width of 0.15 - 0.2 mum and variable length. They arise in short sections and lengthen by the linear addition of more sections with the same width. Late in the stadium they lose their axial alignment and may become branched.  相似文献   
5.
Summary This paper reports the occurrence of an accumulation of lethally altered lymphocytes in the subcapsular sinus of a compartment or compartments of some lymph nodes, an unusual feature best developed in nodes of the mesenteric site in aging athymic animals. Many of these cells are rod-like. In other compartments, similar lymphocytes occurred at various depths in the nodal parenchyma. This was accompanied by the disappearance of a compartment's populations of normal lymphoid cells. The observations reveal that lymphocytes, altered in a tissue, may reach the subcapsular sinus of the draining node compartment and migrate into its parenchyma which then undergoes atrophy. The likely involvement of mast cells is discussed.This work was funded by the Medical Research Council of Canada.  相似文献   
6.
Summary Fibrous components other than collagen fibrils in the reticular fiber of mouse lymph node were studied by electron microscopy. Bundles of microfibrils not associated by elastin and single microfibrils dispersed among collagen fibrils were present. The diameter of the microfibrils was 13.29±2.43 nm (n=100). Elastin-associated microfibrils occurred at the periphery of the reticular fiber. Elastin was enclosed by microfibrils, thus forming the elastic fiber, which was clearly demonstrated by tannic acid-uranyl acetate staining. In the reticular fiber of lymph nodes, the elastic fiber consisted of many more microfibrils and a small amount of elastin. These microfibrils, together with the collagen fibrils, may contribut to the various functions of the reticular fibers.  相似文献   
7.
Summary Lymph nodes contain an extensive array of extracellular matrix fibers frequently referred to as reticular fibers because of their reticular pattern and positive reaction with silver stains. These fibers are known to contain primarily type-III collagen. In the present study, frozen and plastic-embedded sections of mouse and human lymph nodes were subjected to immunostaining with a panel of monospecific antibodies directed against type-IV collagen, type-III collagen, laminin, entactin, and heparan sulfate proteoglycan. Immunofluorescent staining revealed that, in addition to being uniformly stained with antibodies to type-III collagen, these fibers also stained positively with antibodies to type-IV collagen and to other basement-membrane-specific components. Furthermore, the basement-membrane-specific antibodies stained the outer surface of individual fibers. These same type-III collagen-rich fibers were distinct from blood vascular basement membranes since they did not react with antibodies to factor VIII-related antigen, an endothelial-cell-specific marker. The role of these basement-membrane-specific components associated with the reticular fibers of lymphoid tissue is unknown. However, it is possible that the ligands promote attachment of reticular fibroblasts as well as macrophages and lymphocytes to the extracellular matrix fibers.  相似文献   
8.
Summary Voltage-clamped single nerve fibers of the frogRana esculenta were treated with the carboxyl group activating reagent N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of different primary amines and without added amine. Carboxyl groups form stable amide bonds with primary amines in the presence of EEDQ. EEDQ treatment reduced the sodium current considerably and irreversibly, regardless of the presence of a primary amine in the Ringer's solution. The potassium current was also reduced. After modification the reduced sodium currents inactivated slowly and incompletely. The descending branch of the sodium current-voltage relation,I Na(E), was shifted along the voltage axis in the depolarizing direction. The size of the shift was strongly dependent on the amine present during modification with EEDQ. The voltage-dependence of sodium inactivation,h x (E), was shifted to more positive values of membrane potential by EEDQ in the presence of ethylenediamine (11 mV) and glucosamine (3 mV). In contrast, a small shift to more negative potentials occurred in the presence of taurine (–3 mV) or without the addition of an amine (–2 mV). A tenfold increase of the calcium concentration still shifted theI Na(E) andh x (E) curves of the chemically modified fibers. However, these shifts were smaller than those observed on untreated fibers. The currents remaining after the modification were completely blocked by tetrodotoxin; no change of the reversal potential occurred.  相似文献   
9.
Summary The caprine sinoatrial node (SAN) and atrioventricular node (AVN) were studied by freeze-fracture techniques, and their nexus or gap junction structure were compared with that of ordinary atrial and ventricular muscle cells. The general features of the nexus in both the SAN and AVN were essentially identical. Approximately two-thirds of the nexuses observed in the nodal cells consisted of typical macular arrangements of nexal particles, and the remaining third, of atypical configurations of either circular arrangements or linear arrays of particles in continuity with the macular nexuses. Such atypical nexuses were never observed in the ordinary adult myocardial cells. Quantitative analysis revealed that all of the nexuses in the nodal cells measured, were less than 0.1 m2, whereas the majority of the nexuses in ordinary myocardial cells (64% in the atrium and 76% in the ventricle) were larger than 0.1 m2. No significant differences in diameter and center-to-center distance of nexal particle were found between the nodal cells and ordinary myocardial cells.  相似文献   
10.
Summary The popliteal lymph nodes were removed from young rats of various ages five days after a single immunization with TNP-KLH in the hind footpads. Cryostat sections of the lymph nodes were investigated by means of enzyme and immunohistochemical techniques at the light-microscopical level.The presence and localization of anti-TNP antibody-containing cells were examined using a new technique to visualize specific antibodies. Moreover, the development of the lymph nodes following exogenous antigenic stimulation was compared with that of unstimulated lymph nodes.Specific antibody-containing cells could not be found before day 15 after birth, in rats immunized at day 10. From that time these lymphoid cells were located primarily at the border between cortex and medulla. Younger popliteal lymph nodes showed only aspecific immunoglobulin-containing lymphoid cells. With age, the number of specific antibody-containing cells tended to increase. These cells were more mature, according to morphological criteria and were located nearer the medulla.The first primary follicles were seen at day 19, as was the case in unstimulated animals. The first secondary follicles, containing germinal centers, were detected at day 23, whereas in unstimulated popliteal lymph nodes they were never found.Trapping of immune complexes could not be demonstrated before day 33 after birth. The later appearance of this phenomenon might be a consequence of the techniques applied to demonstrate specific antibody-containing cells.Abbreviations PLN popliteal lymph node - FDC follicular dendritic cell - IDC interdigitating cell - HEV high endothelial venule - TNP trinitrophenyl - KLH keyhole limpet hemocyanin - PBS phosphate-buffered saline - GCPC germinal center precursor cell - sIg surface immunoglobulin - cIg cytoplasmic immunoglobulin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号