首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   99篇
  国内免费   2篇
  2023年   11篇
  2022年   20篇
  2021年   25篇
  2020年   33篇
  2019年   35篇
  2018年   32篇
  2017年   31篇
  2016年   26篇
  2015年   29篇
  2014年   37篇
  2013年   43篇
  2012年   37篇
  2011年   49篇
  2010年   18篇
  2009年   18篇
  2008年   20篇
  2007年   17篇
  2006年   12篇
  2005年   16篇
  2004年   11篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有567条查询结果,搜索用时 437 毫秒
1.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
2.
CR 1409, a glutaramic acid derivative with competitive cholecystokinin-antagonistic activity, was administered IP and evaluated in comparison with proglumide (the model CCK-receptor antagonist), gabexate (protease inhibitor) and PGE2 (cytoprotective) on two different models of experimental pancreatitis. Acute pancreatitis was induced in mice by six IP injections of 50 μg/kg caerulein at hourly intervals. The drugs were administered 30 minutes before each caerulein administration. Blood samples and pancreata were collected 3 hours after the last caerulein injection. In the second experiment, pancreatitis was induced in rats by injecting 0.3 ml 6% sodium taurocholate interstitially into the pancreas. The drugs were administered twice, 30 minutes before and 3 hours after taurocholate. The animals were killed 6 hours after laparotomy and blood samples and pancreata were collected. CR 1409 exhibited on both pancreatitis models a protective effect in a dose range of 0.3–10 mg/kg. Proglumide exhibited a protective activity at higher doses (200–400 mg/kg). Gabexate and PGE2 were effective only in pancreatitis induced by taurocholate in a dose range of 30–60 mg/kg and 60–130 μg/kg respectively. These results, showing a high protective effect of CR 1409 on different models of acute pancreatitis, suggest an important role of CCK in the pathogenesis of pancreatitis.  相似文献   
3.
4.
摘要 目的:观察重症急性胰腺炎(SAP)合并腹腔感染(IAI)患者病原菌分布,分析药物敏感性,同时探讨其院内死亡的危险因素。方法:本研究纳入2017年1月~2022年1月期间来解放军联勤保障部队第九二二医院接受治疗并确诊的SAP合并IAI患者100例,采集患者腹水标本,观察其病原菌分布,分析药物敏感性。入院后收集患者人口学特征、实验室检查等资料,探讨患者院内死亡的危险因素。结果:100例SAP合并IAI患者腹水标本中,分离出186株病原菌,其中革兰阴性菌有108株,占比58.06%。革兰阳性菌51株,占比27.42%。真菌27株,占比14.52%。鲍曼不动杆菌对不同抗菌药物的敏感性均较低,大肠埃希菌对厄他培南、亚胺培南、哌拉西林/他唑巴坦、庆大霉素、美罗培南的敏感性较高,肺炎克雷伯菌对亚胺培南、美罗培南的敏感性较高,葡萄球菌属对替加环素、万古霉素、利奈唑胺的敏感性较高,屎肠球菌对替加环素、利奈唑胺的敏感性较高,粪肠球菌对氨苄西林、万古霉素、环丙沙星、替加环素的敏感性较高。单因素分析显示,SAP合并IAI患者院内死亡与器官障碍数目、膀胱压、入院时急性生理学与慢性健康状况评分(APACHE II)评分、白细胞计数(WBC)、血钙、红细胞压积(HCT)、总胆固醇(TC)、甘油三醋(TG)、降钙素原(PCT)、C反应蛋白(CRP)、动脉二氧化碳分压(PaCO2)、动脉氧分压(PaO2)有关(P<0.05)。多因素Logistic回归分析结果显示:器官障碍数目偏多、血钙偏低、CRP偏高、APACHE II评分偏高、膀胱压偏高、PaO2偏低、WBC偏高是导致SAP合并IAI患者院内死亡的危险因素(P<0.05)。结论:SAP合并IAI患者病原菌分布以革兰阴性菌为主,主要的革兰阴性菌、革兰阳性菌耐药率高。此外,器官障碍数目偏多、血钙偏低、CRP偏高、APACHE II评分偏高、膀胱压偏高、PaO2偏低、WBC偏高是影响SAP合并IAI患者院内死亡的危险因素。  相似文献   
5.
Chronic pancreatitis (CP), characterized by pancreatic fibrosis, is a recurrent, progressive and irreversible disease. Activation of the pancreatic stellate cells (PSCs) is considered a core event in pancreatic fibrosis. In this study, we investigated the role of hydrogen peroxide‐inducible clone‐5 (Hic‐5) in CP. Analysis of the human pancreatic tissue samples revealed that Hic‐5 was overexpressed in patients with CP and was extremely low in healthy pancreas. Hic‐5 was significant up‐regulated in the activated primary PSCs independently from transforming growth factor beta stimulation. CP induced by cerulein injection was ameliorated in Hic‐5 knockout (KO) mice, as shown by staining of tissue level. Simultaneously, the activation ability of the primary PSCs from Hic‐5 KO mice was significantly attenuated. We also found that the Hic‐5 up‐regulation by cerulein activated the NF‐κB (p65)/IL‐6 signalling pathway and regulated the downstream extracellular matrix (ECM) genes such as α‐SMA and Col1a1. Therefore, we determined whether suppressing NF‐κB/p65 alleviated CP by treating mice with the NF‐κB/p65 inhibitor triptolide in the cerulein‐induced CP model and found that pancreatic fibrosis was alleviated by NF‐κB/p65 inhibition. These findings provide evidence for Hic‐5 as a therapeutic target that plays a crucial role in regulating PSCs activation and pancreatic fibrosis.  相似文献   
6.
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone‐type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein‐induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF‐κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti‐inflammatory and anti‐fibrotic therapeutic agent for CP.  相似文献   
7.
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity, alleviates the process of acute pancreatitis (AP). However, its mechanism remains elusive. The pathological and physiological characteristics of FGF21 are observed in both patients with AP and cerulein‐induced AP models, and the mechanisms of FGF21 in response to AP are investigated by evaluating the impact of autophagy in FGF21‐treated mice and cultured pancreatic cells. Circulating levels of FGF21 significantly increase in both AP patients and cerulein‐induced AP mice, which is accompanied by the change of pathology in pancreatic injury. Replenishment of FGF21 distinctly reverses cerulein‐induced pancreatic injury and improves cerulein‐induced autophagy damage in vivo and in vitro. Mechanically, FGF21 acts on pancreatic acinar cells to up‐regulate Sirtuin‐1 (Sirt1) expression, which in turn repairs impaired autophagy and removes damaged organs. In addition, blockage of Sirt1 accelerates cerulein‐induced pancreatic injury and weakens the regulative effect in FGF21‐activated autophagy in mice. These results showed that FGF21 protects against cerulein‐induced AP by activation of Sirtuin‐1‐autophagy axis.  相似文献   
8.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   
9.
《Médecine Nucléaire》2020,44(4):231-249
The original thyroid scan (TS) was widely used to identify typical imaging patterns, suggesting the widely accepted main following clinical diagnoses: Grave's disease, Toxic adenoma, [hetero]-nodular goiters and thyroiditis. With the diffusion of sensitive TSH assays, considerable advances in the comprehension of the molecular mechanisms of hormonosynthesis, and new quantification possibilities especially using 123I, the TS is a textbook of molecular imaging. The image can be finely quantified with, not only as regards the Uptake (123IUp) and related parameters but also, the quantification of the spatial targeting leading to a Spatial Target Index (STI). Using this new molecular 123I-TS, TSH values, and when required, correlation to Multiparametric Ultrasounds (MPUS), we generated a basic classification system of hyperthyroidism, with well-defined indexed criteria (C11-1 to C17-3), that allows reporting 24 distinct etiologies. Selected criteria involve TS and contrast patterns, precocious 123IUp (p123IUp), maximal TSH-dependent physiological Uptake, lobar concentration, Uptake and concentration ratios, STI, 99mTc-MIBI TS and correlative MPUS. This approach allows to identify 4 subtypes of Graves’ disease, including hyperplastic, nodular and common GD variants entangled with Hashimoto's struma, 4 subtypes of Thyroid Functional Autonomy, including Disseminated Functional Autonomy, that cannot be diagnosed with other conventional procedures. Criteria C14-1 to C17-3 report on hyperthyroidism and iodine overload, factitia, main thyroiditis presentations and rare central or tumoral etiologies of hyperthyroidism. This classification, based on 123I-TS molecular imaging, leads to unprecedented diagnostic finesse and paves the way for a personalized theranostic approach in thyroid pathology. Further development towards artificial intelligence networks is under study.  相似文献   
10.
BACKGROUNDAutoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide, which emphasizes the urgent need to identify novel treatments. Stem cells from human exfoliated deciduous teeth (SHED), which are easy to obtain in a non-invasive manner, show pronounced proliferative and immunomodulatory capacities.AIMTo investigate the protective effects of SHED on concanavalin A (ConA)-induced hepatitis in mice, and to elucidate the associated regulatory mechanisms.METHODSWe used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis, as well as the associated underlying mechanisms.RESULTSSHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+, CD4+, tumor necrosis-alpha+, and interferon-gamma+ inflammatory cells. Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice. SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations. Mechanistically, ConA upregulated tumor necrosis-alpha and interferon-gamma expression, which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis, resulting in acute liver injury. SHED administration protected hepatocytes from ConA-induced apoptosis. CONCLUSIONSHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway. Our findings could provide a potential treatment strategy for hepatitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号